
CATS 2002 Preliminary Version

Efficient Algorithms for the Maximum
Subarray Problem by Distance Matrix

Multiplication

Tadao Takaoka

Department of Computer Science

University of Canterbury

Christchurch, New Zealand

E-mail: tad@cosc.canterbury.ac.nz

Abstract

We design an efficient algorithm that maximizes the sum of array elements of a
subarray of a two-dimensional array. The solution can be used to find the most
promising array portion that correlates two parameters involved in data, such as
ages and income for the amount of sales per some period. The previous subcubic
time algorithm is simplified, and the time complexity is improved for the worst
case. We also give a more practical algorithm whose expected time is better than
the worst case time.

1 Introduction

Suppose we have a CD-ROM which has the record of monthly sales of some
commodity, classified by the ages and income levels of purchasers. Then the
record items of sales amounts can be stretched over a two-dimensional array,
where each row and column corresponds to an age and an income level. The
maximum subarray problem is to find an array portion of rectangular shape
that maximizes the sum of array elements in it. This sort of data mining
methods are described in [6] and [1]. Since the array elements are all non-
negative, the obvious solution is the whole array. If we subtract the mean
of the array elements from each array element, and consider the modified
maximum subarray problem, we can have more accurate estimation on the
sales trends with respect to some age groups and some income levels. The
same problem can be used in graphics as well. If we subtract the mean values
from the each pixel value in a grey-scale graphic image, we can identify the
brightest portion in the image.

Thus we deal with the maximum subarray problem where array elements
take real numbers, positive, 0, or negative, with at least one positive and one

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



negative, and the total sum is 0. This problem was originated by Bentley [4]
and improved by Tamaki and Tokuyama [10]. Bentley’s algorithm is cubic
and the Tamaki-Tokuyama algorithm is sub-cubic for a nearly square array.
Their algorithm [10] is heavily recursive and complicated. We simplify the
latter algorithm [10], and achieve sub-cubic time for any rectangular array.

We also give a more practical algorithm whose expected time is close to
quadratic for a wide range of random data.

2 Review of distance matrix multiplication

The distance matrix multiplication is to compute the following distance prod-
uct C = AB for two n-dimensional matrices A = [ai,j] and B = [bi,j] whose
elements are real numbers.

ci,j = minn
k=1{ai,k + bk,j}

The best known algorithm for this problem is by Takaoka [8], the com-
puting time of which is O(n3(log log n/ log n)1/2). The meaning of ci,j is the
shortest distance from vertex i in the first layer to vertex j in the third layer
in an acyclic directed graph consisting of three layers of vertices, which are
labelled 1, ...,n in each layer, and the distance from i in the first layer to j in
the second layer is ai,j and that from i in the second layer to j in the third
layer is bi,j. If we replace the above min operation by max, we can define a
similar product, where we have longest distances in the above three layered
graph. The algorithm can be tailored to this version easily by symmetric con-
siderations. We refer to the original multiplication and the algorithm as the
min version, and those with max as the max version.

Assume m divides n. Then we can multiply an (m, n) matrix A and (n, m)
matrix B in the following way. Divide A and B into n/m square matrices of
dimension m, A1, ..., An/m and B1, ..., Bn/m. The matrix C = AB is computed
by

C = min{A1B1, ..., An/mBn/m}

In the above min chooses the minimum component-wise over n/m product
matrices. Then the time is

O(m3(log log m/ log m)1/2)(n/m)) = O(m2n(log log m/ log m)1/2)

3 Maximum subarray problem

We give a two-dimensional array a[1..m, 1..n] as input data. The maximum
subarray problem is to maximize the array portion a[k..i, l..j], that is, to obtain
such indices (k, l) and (i, j). We suppose the upper-left corner has co-ordinate
(1,1).

2



Example 3.1 Let a be given by

-1 2 -3 5 -4 -8 3 -3

2 -4 -6 -8 2 -5 4 1

3 -2 9 -9 |3 6| -5 2

1 -3 5 -7 |8 -2| 2 -6

Then the maximum subarray is given by the rectangle defined by the upper
left corner (3, 5) and the lower right corner (4, 6).

We assume that m ≤ n without loss of generality. We also assume that
m and n are powers of 2. We will mention the general case of m and n later.
Bentley’s algorithm finds the maximum subarray in O(m2n) time, which is
defined to be cubic in this paper. He introduces Kadane’s algorithm for the
one-dimensional case, whose time is linear. In the following, s is the sum of
a tentative maximum subarray a[k..l]. The algorithm accumulates a partial
sum in t and replace s by t and updates the position (k, l), when t becomes
better than s. If t becomes negative, we reset the accumulation.

Kadane’s algorithm /* maximum subarray a[k..l] of a[1..n] */
(k, l) := (0, 0); s := −∞; t := 0; j := 1;
for i:=1 to n do begin

t := t + a[i];

if t > s then begin (k, l) := (j, i); s := t end;

if t < 0 then begin t := 0; j := i + 1 end

end

Unfortunately Kadane’s idea does not work for the two-dimensional case.
Tamaki and Tokuyama’s algorithm solves the problem in subcubic time when
the given array is nearly square, that is, m = O(n). We review their algo-
rithm first. Let us divide the array into four parts by the central vertical
and horizontal lines. We call the upper-left, upper-right, lower-left, and lower
right part the NW (north-west), NE, SW, and SE parts. We define the three
conditional solutions for the problem. The first is the maximum subarray
that crosses over the center, denoted by Acenter. This problem is called the
the center problem. The second is to cross the horizontal center line, denoted
by Arow. This problem is called the row-centered problem. The third is to
cross the vertical center line, denoted by Acolumn. This problem is called the
column-centered problem. The algorithm is roughly described in a recursive
manner as follows:

Main algorithm

If the array becomes one dimensional, horizontal or vertical, solve the problem
by Kadane’s algorithm in linear time. Otherwise
Let ANW be the solution for the NW part.
Let ANE be the solution for the NE part.

3



Let ASW be the solution for the SW part.
Let ASE be the solution for the SE part.
Let Arow be the solution for the row-centered problem.
Let Acolumn be the solution for the column-centered problem.
Let the solution be the maximum subarray of those six.

Algorithm for the row-centered problem

Divide the array into two parts by the vertical center line.
Let Aleft be the solution for the left row-centered problem.
Let Aright be the solution for the right row-centered problem.
Let Acenter be the solution for the center problem.
Let the solution be the maximum of those three.

Algorithm for the column-centered problem

Divide the array into two parts by the horizontal center line.
Let Aupper be the solution for the upper column-centered problem.
Let Alower be the solution for the lower column-centered problem.
Let Acenter be the solution for the center problem.
Let the solution be the maximum of those three.

Let T (m, n) be the computing time for the whole problem. Let Trow(m, n),
Tcolumn(m, n), and Tcenter(m, n) be the time for the row-centered, column-
centered, and center problem respectively. We have the following recurrence
for those time functions, where Tcenter(m, n) is counted twice for simplicity.

T (m, 1) = O(m), T (1, n) = O(n)
T (m, n) = 4T (m/2, n/2) + Trow(m, n) + Tcolumn(m, n)

Trow(m, n) = Tcenter(m, n) + 2Trow(m/2, n)
Tcolumn(m, n) = Tcenter(m, n) + 2Tcolumn(m, n/2)

Now the center problem can be solved in the following way. Let the partial
sums of array elements from the center point towards the north-west, north-
east, south-west, and south-east directions be SNW [i, j], SNE[i, j], SSW [i, j],
and SSE[i, j] respectively. For example, SNW [i, j] is the sum of the array
portion a[i..m/2, j..n/2]. Those partial sums for all i and j can be computed
in O(mn) time. Then Acenter can be computed by

max
m/2,n/2,m,n
i=1,j=1,k=m/2+1,l=n/2+1

{SNW [i, j] + SSW [k, j] + SNE[i, l] + SSE[k, l]}

If we fix i and k, the maximum of the sums of the former two terms and
that of the sums of the latter two terms with respect to the suffices j and
l respectively can be characterized by distance matrix multiplication of max
version. Note that we need to transpose SSW and SSE to fit them into distance
matrix multiplication. Thus the problem can be solved in O(M(m, n)) time,
where M(m, n) is the time for multiplying distance matrices of size (m, n) and
(n, m). From this we see the time Tcenter(m, n) can be given by Tcenter(m, n) =

4



O(M(m, n)). It is shown that the solution of the recurrence equation is given
by

T (m, n) = O(m2n(log log m/ log m)1/2 log(n/m)).

We can assume m ≤ n for all sub-problems, as we can rotate the problem
90 degrees if this condition does not hold. Intuitively speaking, the last fac-
tor log(n/m) in the above comes from the recursion in the column-centered
problem where the recursion proceeds until n becomes equal to m. The com-
putation for the partial sums requires O(mn log n) time. We improve these
complexities in the next section. Specifically, we will go with single recursion,
rather than double recursion.

4 New algorithm

The central algorithmic concept in this section is that of prefix sum. The
prefix sums sum[1..n] of a one-dimensional array a[1..n] is computed by

sum[0] := 0;

for i := 1 to n do sum[i] := sum[i − 1] + a[i];

This algorithm can be extended to two dimensions with linear time, the
details of which are omitted.

We use distance matrix multiplications of both min and max versions
in this section. We compute the partial sums s[i, j] for array portions of
a[1..i, 1..j] for all i and j with boundary condition s[i, 0] = s[0, j] = 0. These
sums are often called the two-dimensional prefix sums of a. Obviously this
can be done in O(mn) time. We show that the column-centered problem can
be solved without recursion. The outer framework of the algorithm is given
below. Note that we need not handle the one-dimensional problem here, and
that the prefix sums once computed are used throughout recursion.

Main algorithm

If the array becomes one element, return its value.
Otherwise, if m > n, rotate the array 90 degrees.
Thus we assume m ≤ n.
Let Aleft be the solution for the left half.
Let Aright be the solution for the right half.
Let Acolumn be the solution for the column-centered problem.
Let the solution be the maximum of those three.

Now the column-centered problem can be solved in the following way.

Acolumn = max
i−1,n/2−1,m,n
k=1,l=0,i=1,j=n/2+1

{s[i, j] − s[i, l] − s[k, j] + s[k, l]}.

5



In the above we first fix i and k, and maximize the above by changing l
and j. Then the above problem is equivalent to maximizing the following for
i = 1, ..., m and k = 1, ..., i − 1.

Acolumn[i, k] = max
n/2−1,n
l=0,j=n/2+1

{−s[i, l] + s[k, l] + s[i, j] − s[k, j]}

Let s∗[i, j] = −s[j, i]. Then the above problem can further be converted into

Acolumn[i, k] = −min
n/2−1

l=0 {s[i, l] + s∗[l, k]} + maxn
j=n/2+1

{s[i, j] + s∗[j, k]}

(1)

The first part in the above is distance matrix multiplication of the min
version and the second part is of the max version. Let S1 and S2 be matrices
whose (i, j) elements are s[i, j − 1] and s[i, j + n/2]. For an arbitrary matrix
T , let T ∗ be that obtained by negating and transposing T . Then the above
can be computed by multiplying S1 and S∗

1 by the min version and taking
the lower triangle, multiplying S2 and S∗

2 by the max version and taking the
lower triangle, and finally subtracting the former from the latter and taking
the maximum from the triangle.

5 Analysis

Let us assume that m and n are each a power of 2, and m ≤ n. As we saw
in Section 2, we can go to the case where m = n by chopping the array into
squares. Thus we analyze the time T (n) for the (n, n) array. We observe the
algorithm splits the array vertically and then horizontally. We can multiply
(n, n/2) and (n/2, n) matrices by 4 multiplications of size (n/2, n/2). We
analyze the number of comparisons. The rest is proportional to this. Let
M(n) be the time for multiplying two (n/2, n/2) matrices. Thus we have the
following recurrence.

T (1) = 0
T (n) = 4T (n/2) + 12M(n).

Theorem 5.1 Let c be an arbitrary constant such that c > 0. Suppose M(n)
satisfies the condition

M(n) ≥ (4 + c)M(n/2).

Then the above T (n) satisfies

T (n) ≤ 12(1 + 4/c)M(n).

Proof. The condition on M(n) means that its asymptotic growth ratio is more
than n2. Theorem holds for T (1) from the algorithm. Now assume theorem
holds for T (n/2) for induction. Then

T (n) = 4T (n/2) + 12M(n)
= 48(1 + 4/c)M(n/2) + 12M(n)

≤ 48(1 + 4/c)/(4 + c)M(n) + 12M(n)
= 12(1 + 4/c)M(n).

6



Clearly the complexity of O(n3(log log n/ log n)1/2) for M(n) satisfies the
condition of the theorem with some constant c > 0. Thus the maximum
subarray problem can be solved in O(m2n(log log m/ log m)1/2) time. Since
we take the maximum of several matrices component-wise in our algorithm,
we need an extra term of O(n2) in the recurrence to count the number of
operations. This term can be absorbed by slightly increasing the constant 12
in front of M(n).

Now suppose one or both of m and n are not given by powers of 2. By
embedding the array a in the array of size (m′,n′) such that m′ and/or n′ are
next powers of 2 and the gap is filled with 0, we can solve the original problem
in the complexity of the same order.

6 Further speed-up on average

In this section we modify the Moffat-Takaoka algorithm [7] for the all pairs
shortest path problem to be used as a fast engine for distance matrix multi-
plication. Let us use the three layered DAG described in section 2.

Fast distance matrix multiplication

Let A = [ai,j] and B = [bi,j] be the two distance matrices. Let C = AB be
the distance product. In the following, we represent suffices by brackets.

First sort the rows of B in increasing order. Using the sorted lists of in-
dices list[k], solve n single source problems by the Moffat-Takaoka algorithm,
where the solution set, to which shortest paths from each source have been
established, is defined on the vertices in the third layer. To solve the single
source problem from source i in the first layer, let each vertex k in the second
layer have its candidate cand[k] in the third layer, which is the first element
in list[k] initially. Organize {k|k = 1, ..., n} into a priority queue by the keys
d[k] = a[i, k]+ b[k, cand[k]]. We repeat deleting v with the minimum key from
the queue, and put cand[v] into the solution set. We scan list[v] to get a
clean candidate for v, that is, cand[v] outside the solution set S. Then we
put v back to the queue with the new key value. After the solution set is
expanded by one, we scan the lists for other w such that cand[w] = cand[v] to
make their candidates cand[w] clean. The key values are changed accordingly
and candidates change their positions in the queue. We stop this expansion
process of the solution set at the critical point where the size is n − n/ log n.
Let U be the solution set at this stage and not changed thereafter. After the
critical point, we further expand the solution set to n in a similar fashion, but
will be satisfied with candidates outside U , that is, half clean. The algorithm
follows.

Sort n rows of B and let the sorted list of indices be list[1], ..., list[n];
Let V = {1, ..., n};
for i := 1 to n do begin

7



for k := 1 to n do begin

cand[k]:=first of list[k];
d[k] := a[i, k] + b[k, cand[k]];

end;
Organize set V into a priority queue with keys d[1], ..., d[n];
Let the solution set S be empty;
/* Phase 1 : Before the critical point */
while |S| ≤ n − n log n do begin

Find v with the minimum key from the queue;
Put cand[v] into S;
c[i, cand[v]] := d[v];
Let W = {w|cand[w] = cand[v]};
for w in W do

while cand[w] is in S do cand[w]:= next of list[w];
Reorganize the queue for W with the new keys d[w] = a[i, w]+b[w, cand[w]];

end;
U := S;
/* Phase 2 : After the critical point */
while |S| < n do begin

Find v with the minimum key from the queue;
if cand[v] is not in S then begin

Put cand[v] into S;
c[v, cand[v]] := d[v];
Let W = {w|cand[w] = cand[v]};

end else W = {v};
for w in W do

cand[w]:=next of list[w];
while cand[w] is in U do cand[w]:= next of list[w];

Reorganize the queue for W with the new keys d[w] = a[i, w]+b[w, cand[w]];
end;

end.

In [7], a binary heap is used for the priority queue, and the reorganization
of the heap is done for W in a bottom-up fashion. The expected time for
reorganization is shown to be O(n/(n − j) + log n), when |S| = j. Then the
time for reorganization is bounded by O(log n), since |S| ≤ n − n log n. Thus
the effort for the queue reorganization in phase 1 is O(n log n) in total.

By the coupon collector’s problem in [5], we need to collect O(m log m)
coupons on average before we get m different kinds of coupons. The expected
number of unsuccessful trials before we get |S| = n after the critical point is
bounded by O(n) by setting m = n/ log n. The expected size of W in phase 2
is O(logn) when S is expanded, and 1 when it is not expanded. In phase 2,
we slightly change the queue reorganization. That is, we perform increase-key
separately for each w, spending O(log n) time per cand(w). From these facts,

8



the expected time for the queue reorganization in phase 2 can be shown to be
O(n logn).

We focused on heap operations. Although we omit the details, we can
show that the scanning efforts to get clean candidates in phase 1 and half
clean candidates in phase 2 are both O(n logn). From these observations we
conclude the complexities before and after the critical point are balanced to
be O(n log n), resulting in the total expected tine of O(n logn).

The expected time for the n single source problems becomes O(n2 log n),
including the time for sorting.

Analysis: The endpoint independence is assumed on the lists list[k], that is,
when we scan the list, any vertex can appear with equal probability. Let T1, ...,
TN be the times for all distance matrix multiplications used in the algorithm
in this section. Then, ignoring some overhead time between distance matrix
multiplications, we have for the expected value E[T ] of the total time T

E[T ] = E[T1 + ... + TN ] = E[T1] + ... + E[TN ].

From the theorem of total expectation, we have E[E[X|Y ]] = E[X] where X|Y
is the conditional random variable of X conditioned by Y . The first E in the
left hand side goes over the sample space of Y and the second over that of X.
In our analysis, X can represent a particular Ti and Y the rest. Thus, if Ti is
the time of distance matrix multiplication for (n, n) matrices, we have E[Ti] =
O(n2 log n). In the analysis of the last section, we chose c to be a constant. In
this section, we set c to 4/ log n. Then we can show E[T (n)] = O(n2 log2 n)
for the square maximum subarray problem, and E[T (m, n)] = O(mn log2 m)
for the rectangular problem of size (m, n), where T (n) and T (m, n) are the
computing times of the corresponding problems.

The above analysis hinges on the endpoint independence, which holds for
the distance matrix multiplication with prefix sums for a wide variety of prob-
ability distribution on the original data array. For simplicity, let us take a
one-dimensional array given by a[1], ..., a[n]. Let s[i] = a[1] + ... + a[i]. For
i < j, we have s[j] − s[i] = a[i + 1] + ... + a[j]. Let us assume a[i] are
independent random variables with prob{a[i] > 0} = 1/2. Then we have
prob{a[i + 1] + ... + a[j] > 0} = 1/2 and thus prob{s[i] < s[j]} = 1/2. Hence
we have any permutation of s[1], ..., s[n] with equal probability of 1/n!, if we
sort them in increasing or decreasing order. If we extend this argument to two
dimensions, we can say we have the endpoint independence, if each a[i, j] has
independent distribution with average value of 0. In practice, the algorithm in
this section is expected to run faster for large m and n in many applications.

7 Concluding remarks

The gap between the trivial lower bound of Ω(mn) and the worst-case com-
plexity in this paper is still large, as the latter is close to cubic. The algorithms

9



for the all pairs shortest paths for a graph with small integer edge costs by
[2] and [9] cut deeply into the sub-cubic complexity. Unfortunately these al-
gorithms can not be used here, since the magnitude of elements in the prefix
sums or partial sums become too large. On the other hand, there is an efficient
algorithm for the all pairs shortest path problem exists [7]. Using this algo-
rithm, we showed the maximum subarray problem can be solved much faster
on average. Note that any fast algorithm for distance matrix multiplication
can be used in the maximum subarray problem for an accelerating engine.
Finally the author expresses his thanks to reviewers whose comments greatly
improved the quality of the paper.

References

[1] Agrawal, R, T. Imielinski, and A. Swami, Mining Association Rules between
Sets of Items in Large Databases, Proc. SIGMOD Conf. on Management of
Data (1993) 207-216

[2] Alon, N, Z. Galil, and O. Margalit, On the exponent of the all pairs shortest
path problem, Proc. 32nd FOCS (1991) 569-575

[3] Bentley, J., Programming Pearls - Algorithm Design Techniques, Comm. ACM,
27-9 (1984) 865-871

[4] Bentley, J., Programming Pearls - Perspective on Performance, Comm. ACM,
27 (1984) 1087-1092

[5] Feller, W, An Introduction to Probability Theory and its Applications, Volume
1, John Wiley and Sons (1950)

[6] Fukuda, T., Y. Morimoto, S. Morishita, and T. Tokuyama, Data Mining
Using Two-Dimensional Optimized Association rules: Scheme, Algorithms and
Visualization, Proc. SIGMOD Conf. on Management of Data (1996) 13-23

[7] Moffat, A. and T. Takaoka, An all pairs shortest path algorithm with O(n2 log n)
expected time, SIAM Jour. Computing, 16 (1987) 1023-1031

[8] Takaoka, T., A New Upper Bound on the complexity of the all pairs shortest
path problem, Info. Proc. Lett., 43 (1992) 195-199

[9] Takaoka, T, Subcubic cost algorithms for the all pairs shortest path problem,
Algorithmica, 20 (1998) 309-318

[10] Tamaki, H. and T. Tokuyama, Algorithms for the Maximum Subarray Problem
Based on Matrix Multiplication, Proceedings of the 9th SODA (Symposium on
Discrete Algorithms) (1998) 446-452

10


