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Fake accounts In social networks

Popular social networks attract bad actors

- Sscams
- malware
- phishing

- efc.

To carry out abuse, bad guys need fake
(or compromised) accounts.

How do we find them?



Reporting fake accounts
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Acting on flagging signals
Flagging is a low-precision signal.
- 35% precision in our LinkedIn data set.

Need to accrue multiple flags before
taking action.

- This takes time.
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We could act faster & more accurately Iif
we knew that some flags were more
precise than others.

Research question: is there such a thing a “super-flagger”?



How do we test whether “super-flaggers” exist?

If flagging is a real skill, it must be:

measurable — possible to distinguish from random guessing

repeatable — persistent over repeated sampling N\/\/




Our contribution

Framework for assessing flagging skKill.

Apply framework to Linkedln data:

- profile report spam
- Invitation reject

- invitation accept (signal for real accounts)

Conclusion: skilled flaggers exist but are very rare.

- N0 noticeable impact on metrics



Prior work

[Zheleva et al. ‘'08], [Chen et al. "15]: Framework to upweight high-precision
reporters in spam classification algorithms, mechanism for reputation to evolve.

- Assumes an Iinitial set of high-precision reporters can be identified.

- Assumes identified reporters will continue to be high-precision.

[Wang et al. '13], [Cresci et al. '17]: Crowdsourcing studies.

- “People can identify differences between [fake] and legitimate profiles, but most
individual testers are not accurate enough to be reliable.”

- Low accuracy on “social spambots”

[Moore-Clayton '08] [Chia-Knapskog "11]: "wisdom of crowds”

- Frequent reporters have higher accuracy (counter to our findings)



Profile flagging data set

Data: all LinkedIn “fake profile” flags over 6-month period

- 293K flags, 227K reporters, 238K reports
- Anti-Abuse team labeled flagged accounts as real or fake

- 35% overall precision

Precision does not improve with number of flags:
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Measurability

How many flags did the user get right?

- # correct flags

Plu) +# flags

Problem: insensitive to number of flags

-1 out of 1 is as good as 50 out of 50

Solution: smoothing

' |

P, (u) # correct flags + o
s\W) =
+# flags + 2«

- find o by optimizing on a test set

 Precision



Measurability: Precision

How many flags did the user get right?

- # correct flags

Plu) +# flags

Problem: insensitive to number of flags

-1 out of 1 is as good as 50 out of 50

Solution: smoothing

' |

P, (u) # correct flags + o
s\W) =
# flags + 2«

- find o by optimizing on a test set
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Measurabillity: Informedness

u Report | Ignore u’ Report | Ignore
Real 5 5 Real 5 95
Fake 5 5 Fake 5 D

: 5

precision = 0 0.5 precision = 0= 0.5



Measurabillity: Informedness

Precision is insensitive to level of fake account

exposure:

u Report | Ignore u’ Report | Ignore
Real 5 5 Real 5 95
Fake 5 5 Fake 5 D

D D
precision = 0 0.5 precision = 0= 0.5



Measurabillity: Informedness

Precision is insensitive to level of fake account

exposure:
u Report | Ignore u’ Report | Ignore
Real H 5 Real H 95
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Informedness: How much better is the user at

flagging fake accounts than real ones?
+# flags of takes  # flags of reals

I(u) =TPR — FPR =
() +# takes seen +# reals seen




Measurabillity: Informedness

Precision is insensitive to level of fake account

exposure:
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Informedness: How much better is the user at

flagging fake accounts than real ones?
+# flags of takes  # flags of reals

I(u) =TPR — FPR =
() +# takes seen +# reals seen




Measurabillity: Informedness

Precision is insensitive to level of fake account

Informedness of Profile Flaggers
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Is 1t skill or luck?

v Report | Ignore v’ Report | Ignore
Real 2 2 Real 20 20
Fake 1 0 Fake 10 0
2 10 20
informedness = — 0.5 1nformedness = 0" 10 — 0.5

Use a statistical hypothesis test to distinguish the two!

Fisher’s exact test on the 2 x 2 contingency table.

Null hypothesis: user is equally likely to flag real and fake accounts.

p-value: probability of finding a matrix “at least as extreme™ as M.



Is 1t skill or luck?

v Report | Ignore v’ Report | Ignore
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Use a statistical hypothesis test to distinguish the two!
Fisher’s exact test on the 2 x 2 contingency table.
Null hypothesis: user is equally likely to flag real and fake accounts.

p-value: probability of finding a matrix “at least as extreme™ as M.



Measurability: Hypothesis Testing

Fisher’s test produces a p-value: probability of
finding a matrix “at least as extreme” as M.
— define “Fisher Score” = 1 — p-value

Fisher Score of Profile Flaggers
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Repeatability — Correlation

Are skilled flaggers in data set A the same as skilled flaggers in data set B?

Pearson correlation coefficient. linear correlation of scores.
Spearman correlation coefficient. Pearson correlation of rank vectors.

Flagging Score Pearson Spearman
Smoothed Precision 0.69 0.66
Informedness 0.52 0.49
Fisher Score 0.62 0.63

Problem: independent of score magnitude

user | A score | B score
a 0.94 0.1
b 0.95 0.2  Pertect
C 0.96 0.3 correlation!
d 0.97 0.4
e 0.98 0.5




Repeatability — Persistence

Probability that user with a good score in data set A also has a good score
In data set B?

Define persistence at score (3 to be

~ #f users with score > 5 in A and B
~ # users with score > B in A or B

()

Persistence on flagging data:
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Putting It all together

Compute skill threshold for each measurement based on precision on a held-
out test set.

- Threshold is such that error rate is less than half the average.

Define “skilled flagger” to be one who is above the threshold on 2 of 3 metrics,
on 2 different data sets

- high smoothed flagging precision
- flags real and fake accounts in different proportion

- difference in behavior in flagging real and fake accounts is statistically significant



Profile flagging — skilled flaggers

5600 skilled flaggers

- 31% of those who flagged =2 times m. Precision 3 Informednes
- 2.4% of all flaggers 2 0
- 82% cumulative precision 4086
215 1255
4300 high-precision skilled flaggers
- 13940 accounts flagged (77/day) 192

. . Fish
- 97% cumulative precision isher Score




Data set 2: Invitation response

Invitation reject. reporting signal on fake accounts
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An experiment

Invitation Reject

Simulation: replace member’s responses to fake

accounts with binomial samples distributed like S
responses to real accounts. £ S Fisher score
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Conclusions

Motivating question: Are there some social network users who are good at
Identifying fake accounts?

Answer: yes, but not enough to make acting on the signal worthwhile:

- < 2.4% of profile flaggers
- < 1.3% of members rejecting invitations

- < 3.8% of members accepting invitations (i.e. identifying real accounts)

Further work:

- Investigate Ul changes to improve flagging ability

- find other features correlated with skill (e.g. geo)



Questions?

dfreeman@linkedin.com
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