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Fake accounts in social networks
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Popular social networks attract bad actors 

• scams 
• malware 
• phishing 
• etc. 

To carry out abuse, bad guys need fake  
(or compromised) accounts. 

How do we find them?



Reporting fake accounts
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Acting on flagging signals
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Flagging is a low-precision signal. 

• 35% precision in our LinkedIn data set. 

Need to accrue multiple flags before 
taking action. 

• This takes time. 

We could act faster & more accurately if 
we knew that some flags were more 
precise than others.

Research question: is there such a thing a “super-flagger”?



How do we test whether “super-flaggers” exist?
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If flagging is a real skill, it must be: 

measurable — possible to distinguish from random guessing 

repeatable — persistent over repeated sampling



Our contribution
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Framework for assessing flagging skill. 

Apply framework to LinkedIn data: 
• profile report spam 
• invitation reject 
• invitation accept (signal for real accounts) 

Conclusion: skilled flaggers exist but are very rare. 
• no noticeable impact on metrics



Prior work
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[Zheleva et al. ‘08], [Chen et al. ‘15]: Framework to upweight high-precision 
reporters in spam classification algorithms, mechanism for reputation to evolve. 

• Assumes an initial set of high-precision reporters can be identified. 
• Assumes identified reporters will continue to be high-precision. 

[Wang et al. ’13], [Cresci et al. ’17]: Crowdsourcing studies. 

• “People can identify differences between [fake] and legitimate profiles, but most 
individual testers are not accurate enough to be reliable.” 

• Low accuracy on “social spambots” 

[Moore-Clayton ‘08] [Chia-Knapskog ’11]: “wisdom of crowds” 

• Frequent reporters have higher accuracy (counter to our findings)
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Profile flagging data set
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Data: all LinkedIn “fake profile” flags over 6-month period 

• 293K flags, 227K reporters, 238K reports 
• Anti-Abuse team labeled flagged accounts as real or fake 
• 35% overall precision 

Precision does not improve with number of flags:

(last bucket is all 
members with 
≥18 flags)



Measurability: Precision
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How many flags did the user get right? 

Problem: insensitive to number of flags 
• 1 out of 1 is as good as 50 out of 50 

Solution: smoothing 

• find    by optimizing on a test set

P (u) =
# correct flags

# flags

Ps(u) =
# correct flags + ↵

# flags + 2↵

↵
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Measurability: Informedness
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Measurability: Informedness
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Precision is insensitive to level of fake account 
exposure:
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Measurability: Informedness
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Precision is insensitive to level of fake account 
exposure:

Informedness: How much better is the user at 
flagging fake accounts than real ones?
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Measurability: Informedness
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Measurability: Informedness
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Precision is insensitive to level of fake account 
exposure:

Informedness: How much better is the user at 
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Is it skill or luck?
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Use a statistical hypothesis test to distinguish the two! 

Fisher’s exact test on the 2 x 2 contingency table. 

Null hypothesis: user is equally likely to flag real and fake accounts. 

p-value: probability of finding a matrix “at least as extreme” as M.
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Use a statistical hypothesis test to distinguish the two! 
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Measurability: Hypothesis Testing
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Fisher’s test produces a p-value: probability of 
finding a matrix “at least as extreme” as M. 
     — define “Fisher Score” = 1 – p-value          

Problem: statistically significant flaggers may 
not be good flaggers 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Repeatability — Correlation
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Are skilled flaggers in data set A the same as skilled flaggers in data set B? 

Pearson correlation coefficient: linear correlation of scores. 
Spearman correlation coefficient: Pearson correlation of rank vectors. 

Problem: independent of score magnitude
user A score B score

a 0.94 0.1
b 0.95 0.2
c 0.96 0.3
d 0.97 0.4
e 0.98 0.5

Perfect  
correlation!

Flagging Score Pearson Spearman

Smoothed Precision 0.69 0.66

Informedness 0.52 0.49

Fisher Score 0.62 0.63
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Repeatability — Persistence
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Probability that user with a good score in data set A also has a good score 
in data set B? 

Define persistence at score    to be 

Persistence on flagging data: 

⇡(�) =

# users with score > � in A and B

# users with score > � in A or B

�



Putting it all together
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Compute skill threshold for each measurement based on precision on a held-
out test set. 

• Threshold is such that error rate is less than half the average. 

Define “skilled flagger” to be one who is above the threshold on 2 of 3 metrics, 
  on 2 different data sets 

• high smoothed flagging precision 
• flags real and fake accounts in different proportion 
• difference in behavior in flagging real and fake accounts is statistically significant



Profile flagging — skilled flaggers
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5600 skilled flaggers 

• 31% of those who flagged ≥2 times 
• 2.4% of all flaggers 
• 82% cumulative precision 

4300 high-precision skilled flaggers 

• 13940 accounts flagged (77/day) 
• 97% cumulative precision 
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Data set 2: Invitation response
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Invitation reject: reporting signal on fake accounts 

Invitation accept: reporting signal on real accounts 

Evaluation: 
• 500,000 members from June 2016 receiving  
≥2 spam and ≥3 non-spam invitations 

• look at responses within the first 24 hours 
• 1.3% were skilled at rejecting fakes 
• 3.8% were skilled at accepting reals

EXAMPLE 
ONLY



An experiment
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Simulation: replace member’s responses to fake 
accounts with binomial samples distributed like 
responses to real accounts. 

• Fisher scores are lower for simulated data 
• persistence drops to zero much more quickly for 
simulated data 
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Conclusions
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Motivating question: Are there some social network users who are good at 
identifying fake accounts? 

Answer: yes, but not enough to make acting on the signal worthwhile: 
• < 2.4% of profile flaggers 
• < 1.3% of members rejecting invitations 
• < 3.8% of members accepting invitations (i.e. identifying real accounts) 

Further work: 
• investigate UI changes to improve flagging ability 
• find other features correlated with skill (e.g. geo)
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