Functional Encryption for Inner Product Predicates from Learning with Errors

Shweta Agrawal¹, **David Mandell Freeman**², and Vinod Vaikuntanathan³

¹UCLA, USA; ²Stanford University, USA; ³University of Toronto, Canada

Asiacrypt 2011 Seoul, Korea 5 December 2011

- m must be encrypted separately to each user.
- Recipient set must be decided in advance.

- Ciphertext equipped with attribute a.
- sk equipped with predicate f.
- User with sk_f can decrypt iff f(a) = 1.

- Ciphertext equipped with attribute a.
- sk equipped with predicate f.
- User with sk_f can decrypt iff f(a) = 1.

E.g.: attribute a = (conf="Asiacrypt", year=2011),

- Ciphertext equipped with attribute a.
- sk equipped with predicate f.
- User with sk_f can decrypt iff f(a) = 1.

E.g.: attribute a = (conf="Asiacrypt", year=2011), predicates $f = (conf="Asiacrypt" AND year <math>\geq 2000),$

- Ciphertext equipped with attribute a.
- sk equipped with predicate f.
- User with sk_f can decrypt iff f(a) = 1.

E.g.: attribute a = (conf="Asiacrypt", year=2011),predicates $f = (conf="Asiacrypt" AND year \ge 2000),$ g = (conf="Eurocrypt" OR year=2011)

Prior Work on Functional Encryption

Identity-based encryption is functional encryption for equality predicates.

- Ciphertexts & keys equipped with identity id.
- Decrypt succeeds iff (key id) = (CT id).
- Achieved using pairings, QR, and lattices.
 [BF01,BB04ab,...], [C01,BGH07], [GPV08,CHKP10,ABB10ab]

Prior Work on Functional Encryption

Identity-based encryption is functional encryption for equality predicates.

- Ciphertexts & keys equipped with identity id.
- Decrypt succeeds iff (key id) = (CT id).
- Achieved using pairings, QR, and lattices.
 [BF01,BB04ab,...], [C01,BGH07], [GPV08,CHKP10,ABB10ab]

Inner product predicates [KSW08,OT09,LOSTW10,...]:

- CT \leftrightarrow vector \vec{w} ; key \leftrightarrow vector \vec{v}
- Key for \vec{v} can decrypt CT for \vec{w} iff $\langle \vec{v}, \vec{w} \rangle = 0$.
- Achieved using pairings.

Prior Work on Functional Encryption

Identity-based encryption is functional encryption for equality predicates.

- Ciphertexts & keys equipped with identity id.
- Decrypt succeeds iff (key id) = (CT id).
- Achieved using pairings, QR, and lattices.
 [BF01,BB04ab,...], [C01,BGH07], [GPV08,CHKP10,ABB10ab]

Inner product predicates [KSW08,OT09,LOSTW10,...]:

- CT \leftrightarrow vector \vec{w} ; key \leftrightarrow vector \vec{v}
- Key for \vec{v} can decrypt CT for \vec{w} iff $\langle \vec{v}, \vec{w} \rangle = 0$.
- Achieved using pairings.

[KSW08]: Inner product predicates allow us to instantiate range, conjunction, disjunction, and polynomial evaluation predicates.

Our Contribution

Functional encryption for inner product predicates based on the *learning with errors* (LWE) assumption.

- Achieves functionality of [KSW08].
- Worst-case reduction, (conjectured) quantum security.
- Allows inner products over small fields.

Our Contribution

Functional encryption for inner product predicates based on the *learning with errors* (LWE) assumption.

- Achieves functionality of [KSW08].
- Worst-case reduction, (conjectured) quantum security.
- Allows inner products over small fields.

Privacy property: CT attribute is hidden from users who cannot decrypt ("weakly attribute hiding").

- [KSW08] construction hides attribute from all users.
- Open problem: achieve same privacy property from LWE.

Lattice-based PKE [GPV08 "dual Regev"]:

Lattice-based PKE [GPV08 "dual Regev"]:

pk: lattice $\Lambda \subset \mathbb{Z}^m$

Lattice-based PKE [GPV08 "dual Regev"]:

pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.

Lattice-based PKE [GPV08 "dual Regev"]:

pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.

sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.

Lattice-based PKE [GPV08 "dual Regev"]:

pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.

sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.

Enc: vector \mathbf{c} close to Λ ,

scalar c' encoding $m \in \{0, 1\}$.

Lattice-based PKE [GPV08 "dual Regev"]:

pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.

sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.

Enc: vector \mathbf{c} close to Λ ,

scalar c' encoding $m \in \{0, 1\}$.

Dec: use $\langle \mathbf{s}, \mathbf{c} \rangle$ to decode c'.

Lattice-based PKE [GPV08 "dual Regev"]:

pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.

sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.

Enc: vector **c** close to Λ , scalar c' encoding $m \in \{0, 1\}$.

Dec: use $\langle \mathbf{s}, \mathbf{c} \rangle$ to decode c'.

Two ways to generate keys for Λ :

Choose short sk s, compute pk vector u.

Lattice-based PKE [GPV08 "dual Regev"]:

pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.

sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.

Enc: vector **c** close to Λ , scalar c' encoding $m \in \{0, 1\}$.

Dec: use $\langle \mathbf{s}, \mathbf{c} \rangle$ to decode c'.

Two ways to generate keys for Λ :

- Choose short sk s, compute pk vector u.
- Given u, use short basis of Λ[⊥] to find s.

Lattice-based PKE [GPV08 "dual Regev"]:

pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.

sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.

Enc: vector **c** close to Λ , scalar c' encoding $m \in \{0, 1\}$.

Dec: use $\langle \mathbf{s}, \mathbf{c} \rangle$ to decode c'.

Two ways to generate keys for Λ :

- Choose short sk s, compute pk vector u.
- Given u, use short basis of Λ[⊥] to find s.

Lattice-based PKE [GPV08 "dual Regev"]:

pk: lattice $\Lambda \subset \mathbb{Z}^m$, vector **u**.

sk: short vector **s** in coset $\Lambda^{\perp} + \mathbf{u}$ of dual lattice.

Enc: vector **c** close to Λ , scalar c' encoding $m \in \{0, 1\}$.

Dec: use $\langle \mathbf{s}, \mathbf{c} \rangle$ to decode c'.

Two ways to generate keys for Λ :

- Choose short sk s, compute pk vector u.
- Given \mathbf{u} , use short basis of Λ^{\perp} to find \mathbf{s} .

[A99,AP09]: Can generate a random lattice Λ along with short basis of $\Lambda^{\perp} = \text{trapdoor}$ for Λ .

Building Block: Lattice-Based IBE [CHKP10,ABB10ab]

Each identity *id* defines a lattice Λ_{id} .

- CT is GPV encryption relative to Λ_{id} .
- Trapdoor for Λ_{id} used to derive sk for id.
- Can decrypt iff sk lattice matches CT lattice.

Building Block: Lattice-Based IBE [CHKP10,ABB10ab]

Each identity *id* defines a lattice Λ_{id} .

- CT is GPV encryption relative to Λ_{id} .
- Trapdoor for Λ_{id} used to derive sk for id.
- Can decrypt iff sk lattice matches CT lattice.

IBE schemes don't seem to generalize to functional encryption:

• In functional encryption, many sk can decrypt each CT. CT for \vec{w} decryptable by sk for any \vec{v} with $\langle \vec{v}, \vec{w} \rangle = 0$.

Building Block: Lattice-Based IBE [CHKP10,ABB10ab]

Each identity *id* defines a lattice Λ_{id} .

- CT is GPV encryption relative to Λ_{id} .
- Trapdoor for Λ_{id} used to derive sk for id.
- Can decrypt iff sk lattice matches CT lattice.

IBE schemes don't seem to generalize to functional encryption:

• In functional encryption, many sk can decrypt each CT. CT for \vec{w} decryptable by sk for any \vec{v} with $\langle \vec{v}, \vec{w} \rangle = 0$.

Conclude: can't require CT lattice to match sk lattice.

Encrypt relative to attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^r$

Encrypt relative to attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^r$

Encrypt relative to attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^r$

"short" linear map

$$T_{\vec{\mathbf{v}}} \colon \mathbb{Z}^r \to \mathbb{Z}^s$$

sk corresponds to $predicate\ lattice\ \Lambda_{\vec{v}}\subset\mathbb{Z}^s$

$$\mathcal{T}_{\vec{v}}(\Lambda_{\vec{w}}) = \Lambda_{\vec{v}} \quad \text{iff} \quad \langle \vec{v}, \vec{w} \rangle = 0$$

Encrypt relative to attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^r$

"short" linear map

 $T_{\vec{v}} \colon \mathbb{Z}^r \to \mathbb{Z}^s$

sk corresponds to predicate lattice $\Lambda_{\vec{v}} \subset \mathbb{Z}^s$

$$\mathcal{T}_{\vec{v}}(\Lambda_{\vec{w}}) = \Lambda_{\vec{v}} \quad \text{iff} \quad \langle \vec{v}, \vec{w} \rangle = 0$$

If
$$\langle \vec{v}, \vec{w} \rangle = 0$$
, $T_{\vec{v}}(\mathbf{c})$ is a CT relative to $\Lambda_{\vec{v}}$

Encrypt relative to attribute lattice $\Lambda_{\vec{w}} \subset \mathbb{Z}^r$

"short" linear map

 $T_{\vec{v}} \colon \mathbb{Z}^r \to \mathbb{Z}^s$

sk corresponds to predicate lattice $\Lambda_{\vec{v}} \subset \mathbb{Z}^s$

$$\mathcal{T}_{\vec{v}}(\Lambda_{\vec{w}}) = \Lambda_{\vec{v}} \quad \text{iff} \quad \langle \vec{v}, \vec{w} \rangle = 0$$

If $\langle \vec{v}, \vec{w} \rangle = 0$, $T_{\vec{v}}(\mathbf{c})$ is a CT relative to $\Lambda_{\vec{v}}$ \Rightarrow key for $\Lambda_{\vec{v}}$ can decrypt $T_{\vec{v}}(\mathbf{c})$.

What Lattices are Used?

Regev/GPV lattice Λ defined by matrix $\mathbf{A}_0 \in \mathbb{Z}_q^{n \times m}$, n < m:

$$\Lambda = \Lambda_q(\mathbf{A}_0) = \left\{ \mathbf{v} \in \mathbb{Z}^m : \mathbf{v} \bmod q = \mathbf{r}^t \cdot \mathbf{A}_0 \text{ for some } \mathbf{r} \in \mathbb{Z}_q^n \right\}$$

• i.e., vectors in \mathbb{Z}^m that (mod q) are linear combinations of rows of \mathbf{A}_0 .

What Lattices are Used?

Regev/GPV lattice Λ defined by matrix $\mathbf{A}_0 \in \mathbb{Z}_q^{n \times m}$, n < m:

$$\Lambda = \Lambda_q(\mathbf{A}_0) = \left\{ \mathbf{v} \in \mathbb{Z}^m : \mathbf{v} mod q = \mathbf{r}^t \cdot \mathbf{A}_0 mod ext{for some } \mathbf{r} \in \mathbb{Z}_q^n
ight\}$$

• i.e., vectors in \mathbb{Z}^m that (mod q) are linear combinations of rows of \mathbf{A}_0 .

[ABB10a] IBE: to encrypt to identity id, use lattice

$$\Lambda_{id} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + H(id)\mathbf{B}) \subset \mathbb{Z}^{2m}.$$

- public \mathbf{A}_0 , \mathbf{A}_1 , $\mathbf{B} \in \mathbb{Z}_q^{n \times m}$.
- $H: \{0,1\}^* \to \mathbb{Z}_q^{n \times n}$ is a hash function.

Secret key for Λ_{id} can be computed using trapdoor for \mathbf{A}_0 .

A Functional Encryption Scheme

To compute CT for vector $\vec{w} = (w_1, \dots, w_\ell)$, use lattice

$$\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_\ell + w_\ell \mathbf{B}) \subset \mathbb{Z}^{(1+\ell)m}.$$

• public $\mathbf{A}_i, \mathbf{B} \in \mathbb{Z}_q^{n \times m}$.

To compute CT for vector $\vec{w} = (w_1, \dots, w_\ell)$, use lattice

$$\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_\ell + w_\ell \mathbf{B}) \subset \mathbb{Z}^{(1+\ell)m}.$$

• public $\mathbf{A}_i, \mathbf{B} \in \mathbb{Z}_q^{n \times m}$.

To generate sk for vector $\vec{v} = (v_1, \dots, v_\ell)$, use lattice

$$\Lambda_{\vec{v}} = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i) \subset \mathbb{Z}^{2m}.$$

Use trapdoor for A₀ + [CHKP10] "delegation" technique.

To compute CT for vector $\vec{w} = (w_1, \dots, w_\ell)$, use lattice

$$\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_\ell + w_\ell \mathbf{B}) \subset \mathbb{Z}^{(1+\ell)m}.$$

• public $\mathbf{A}_i, \mathbf{B} \in \mathbb{Z}_q^{n \times m}$.

To generate sk for vector $\vec{v} = (v_1, \dots, v_\ell)$, use lattice

$$\Lambda_{\vec{\mathbf{v}}} = \Lambda_q(\mathbf{A}_0 \parallel \sum \mathbf{v}_i \mathbf{A}_i) \subset \mathbb{Z}^{2m}.$$

• Use trapdoor for **A**₀ + [CHKP10] "delegation" technique.

To decrypt, apply transformation $T_{\vec{v}}: \mathbb{Z}^{(1+\ell)m} \to \mathbb{Z}^{2m}$ given by

$$T_{\vec{v}}(\mathbf{c}_0,\ldots,\mathbf{c}_\ell)=(\mathbf{c}_0,\sum v_i\mathbf{c}_i).$$

To compute CT for vector $\vec{w} = (w_1, \dots, w_\ell)$, use lattice

$$\Lambda_{\vec{w}} = \Lambda_{q}(\mathbf{A}_{0} \parallel \mathbf{A}_{1} + w_{1}\mathbf{B} \parallel \cdots \parallel \mathbf{A}_{\ell} + w_{\ell}\mathbf{B}) \subset \mathbb{Z}^{(1+\ell)m}.$$

• public $\mathbf{A}_i, \mathbf{B} \in \mathbb{Z}_q^{n \times m}$.

To generate sk for vector $\vec{v} = (v_1, \dots, v_\ell)$, use lattice

$$\Lambda_{\vec{v}} = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i) \subset \mathbb{Z}^{2m}.$$

• Use trapdoor for **A**₀ + [CHKP10] "delegation" technique.

To decrypt, apply transformation $T_{\vec{v}}: \mathbb{Z}^{(1+\ell)m} \to \mathbb{Z}^{2m}$ given by

$$T_{\vec{v}}(\mathbf{c}_0,\ldots,\mathbf{c}_\ell)=(\mathbf{c}_0,\sum v_i\mathbf{c}_i).$$

Then

$$T_{\vec{v}}(\Lambda_{\vec{w}}) = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i + \langle \vec{v}, \vec{w} \rangle \mathbf{B})$$

So sk for $\Lambda_{\vec{v}}$ can decrypt $T_{\vec{v}}(CT)$ iff $\langle \vec{v}, \vec{w} \rangle = 0$ (and \vec{v} is short).

Challenger

attributes \vec{w}_0, \vec{w}_1

Challenger

Challenger

Challenger

Challenger

Challenger

Challenger

Challenger

$$b \stackrel{R}{\leftarrow} \{0,1\}$$

Challenger

$$b \stackrel{R}{\leftarrow} \{0,1\}$$

Challenger

 $b \stackrel{R}{\leftarrow} \{0,1\}$

Challenger

$$b \stackrel{R}{\leftarrow} \{0,1\}$$

$$b \stackrel{R}{\leftarrow} \{0,1\}$$

Adversary

 $\textit{b}' \in \{0,1\}$

Definition

Scheme is *weakly attribute hiding* if $|\Pr[b'=b] - \frac{1}{2}|$ is negligible for all efficient A.

Security Theorem

Learning With Errors (LWE) assumption [R05]

For fixed $\mathbf{s} \in \mathbb{Z}_q^n$, "noisy inner products" with \mathbf{s} are indistinguishable from random:

$$\left\{\boldsymbol{a}_{i},\left\langle\boldsymbol{s},\boldsymbol{a}_{i}\right\rangle+e_{i}\right\}_{i=1}^{m}\ \approx_{c}\ \left\{\boldsymbol{a}_{i},r_{i}\right\}_{i=1}^{m}$$

for random $\mathbf{a}_i \in \mathbb{Z}_q^n$, small $e_i \in \mathbb{Z}$, and random $r_i \in \mathbb{Z}_q$.

Security Theorem

Learning With Errors (LWE) assumption [R05]

For fixed $\mathbf{s} \in \mathbb{Z}_q^n$, "noisy inner products" with \mathbf{s} are indistinguishable from random:

$$\left\{\mathbf{a}_{i},\left\langle \mathbf{s},\mathbf{a}_{i}\right\rangle +e_{i}\right\}_{i=1}^{m}\ \approx_{c}\ \left\{\mathbf{a}_{i},r_{i}\right\}_{i=1}^{m}$$

for random $\mathbf{a}_i \in \mathbb{Z}_q^n$, small $e_i \in \mathbb{Z}$, and random $r_i \in \mathbb{Z}_q$.

 [R05,P09]: Algorithms that break LWE assumption can be used to solve worst-case lattice problems.

Security Theorem

Learning With Errors (LWE) assumption [R05]

For fixed $\mathbf{s} \in \mathbb{Z}_q^n$, "noisy inner products" with \mathbf{s} are indistinguishable from random:

$$\left\{\mathbf{a}_{i},\left\langle \mathbf{s},\mathbf{a}_{i}\right\rangle +e_{i}\right\}_{i=1}^{m}\ \approx_{c}\ \left\{\mathbf{a}_{i},r_{i}\right\}_{i=1}^{m}$$

for random $\mathbf{a}_i \in \mathbb{Z}_q^n$, small $e_i \in \mathbb{Z}$, and random $r_i \in \mathbb{Z}_q$.

 [R05,P09]: Algorithms that break LWE assumption can be used to solve worst-case lattice problems.

Theorem

If the LWE assumption holds, then our inner product encryption scheme is weakly attribute hiding.

CT lattice: $\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_\ell + w_\ell \mathbf{B})$. sk lattice: $\Lambda_{\vec{v}} = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i)$.

CT lattice:
$$\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_\ell + w_\ell \mathbf{B})$$
. sk lattice: $\Lambda_{\vec{v}} = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i)$.

[ABB10a] technique: Trapdoor for **B** can be used to answer sk queries for \vec{v} with $\langle \vec{v}, \vec{w} \rangle \neq 0$.

CT lattice:
$$\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_\ell + w_\ell \mathbf{B})$$
. sk lattice: $\Lambda_{\vec{v}} = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i)$.

[ABB10a] technique: Trapdoor for **B** can be used to answer sk queries for \vec{v} with $\langle \vec{v}, \vec{w} \rangle \neq 0$.

Embed LWE challenge in the matrix \mathbf{A}_0 .

- If LWE challenge is "noisy inner products" $\langle \mathbf{s}, \mathbf{a}_i \rangle + e_i$, obtain real CT.
- If LWE challenge is random r_i , obtain uniformly random CT (no info. about message or attribute).

CT lattice:
$$\Lambda_{\vec{w}} = \Lambda_q(\mathbf{A}_0 \parallel \mathbf{A}_1 + w_1 \mathbf{B} \parallel \cdots \parallel \mathbf{A}_\ell + w_\ell \mathbf{B})$$
. sk lattice: $\Lambda_{\vec{v}} = \Lambda_q(\mathbf{A}_0 \parallel \sum v_i \mathbf{A}_i)$.

[ABB10a] technique: Trapdoor for **B** can be used to answer sk queries for \vec{v} with $\langle \vec{v}, \vec{w} \rangle \neq 0$.

Embed LWE challenge in the matrix \mathbf{A}_0 .

- If LWE challenge is "noisy inner products" $\langle \mathbf{s}, \mathbf{a}_i \rangle + e_i$, obtain real CT.
- If LWE challenge is random r_i, obtain uniformly random CT (no info. about message or attribute).

Adversary that breaks system can break LWE assumption.

- Fully attribute-hiding system.
 - Answer sk queries for \vec{v} when $\langle \vec{v}, \vec{w} \rangle = 0$. [requires $m_0 = m_1$]

- Fully attribute-hiding system.
 - Answer sk queries for \vec{v} when $\langle \vec{v}, \vec{w} \rangle = 0$. [requires $m_0 = m_1$]
- Fully secure system.
 - Allow adversary to make key queries before choosing attributes $\vec{w_j}$.

- Fully attribute-hiding system.
 - Answer sk queries for \vec{v} when $\langle \vec{v}, \vec{w} \rangle = 0$. [requires $m_0 = m_1$]
- Fully secure system.
 - Allow adversary to make key queries before choosing attributes $\vec{w_j}$.
- Improve efficiency.
 - Current system is efficient for \vec{v} , \vec{w} over small fields.

- Fully attribute-hiding system.
 - Answer sk queries for \vec{v} when $\langle \vec{v}, \vec{w} \rangle = 0$. [requires $m_0 = m_1$]
- Fully secure system.
 - Allow adversary to make key queries before choosing attributes \vec{w}_j .
- Improve efficiency.
 - Current system is efficient for \vec{v} , \vec{w} over small fields.
- Functional encryption for larger class of predicates.
 - Leverage techniques from fully homomorphic encryption?

- Fully attribute-hiding system.
 - Answer sk queries for \vec{v} when $\langle \vec{v}, \vec{w} \rangle = 0$. [requires $m_0 = m_1$]
- Fully secure system.
 - Allow adversary to make key queries before choosing attributes \vec{w}_j .
- Improve efficiency.
 - Current system is efficient for \vec{v} , \vec{w} over small fields.
- Functional encryption for larger class of predicates.
 - Leverage techniques from fully homomorphic encryption?

Thank you!