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1 Introduction

In the same volume of Diophantus in which he scribbled the enigmatic com-
ment that became known as the Last Theorem, Pierre Fermat also wrote,

I have discovered a most beautiful theorem...every number is a square
or the sum of two, three or four squares... The theorem is based on
the most diverse and abstruse mysteries of numbers, but T am not able

to include the proof here...!

More than a hundred years later, in 1770, Lagrange gave the proof that
Fermat omitted, showing that any natural number can be expressed as the
sum of four squares. (iven this result, a natural question to ask is how
many ways a given number can be represented by a sum of four squares.
This problem was solved by Jacobi in 1829, who gave a concise formula for

the number of representations.

If we denote by rg(n) the number of representations of n as a sum of
s squares, then Jacobi’s formula gives ry(n). Subsequent mathematicians
adapted Jacobi’s result to sums of other numbers of squares and by 1907 had
given formulae for s = 3 and every even integer through 12. Tn 1916, Ra-
manujan observed that it is possible to compute a very good approximation
to rs(n) that holds for all s. The main goal of this essay is to explain and
prove this assertion, which takes the form of the following theorem.

'Cit. and trans. in [N, p. 3]



Theorem 1. For any nonnegative integer n and positive integer s, let rs(n)
be the number of solutions in the integers to the equation

2 2
i+ ...+ x, = n.

Then for s > 4,
() = 64n) + (),

where dg(n) = O (n”’/%w and hg(n) = O (n”’“).

In particular, d,(n) is a very good approximation to r(n) for large n. For
general s the formulae for §5(n) and hy(n) are hard to work with, but we
can simplify them in a few specific cases. When s is a multiple of 4 we can
compute a simple formula for ds(n) in terms the divisors of n, and when s
is 4 or 8 the term hg(n) is identically zero. Combining these results gives us
explicit formulae for the number of representations of n as a sum of four or
eight squares.

Theorem 2. Let ry(n) be defined as in Theorem 1. Then

8 Z d  formn odd

r]|n
7"4(”) = 24 Z d forn even,

d|n
d odd

and
ra(n) =163 (—1)"*d".

d|n

Jacobi proved the formula for r4(n) using theta functions, which are a
type of modular form. The proof of the more general theorem builds on
the same ideas and relies on the theory of modular forms. In Section 2 we
show that the number of ways a number can be represented as the sum of s
squares is given by the Fourier coefficients of a certain theta function, and we
demonstrate that this function is in fact a modular form. In Section 3, we use
a type of modular form called Eisenstein series to derive an explicit formula
for the portion of the theta function that does not vanish on all cusps. After
this is done what remains of the original theta function is a cusp form. In
Section 4, we show that the Fourier coefficients of this cusp form are not too
large, so that in the limit as n goes to infinity the contribution of the cusp
form is negligible. We also discuss methods of improving the bound on hy(n)



in Theorem 1, which involves estimating the Fourier coefficients of a type of
cusp form called Poincaré series.

One might ask whether Theorem 1 generalises to sums of cubes and higher
powers. The answer is yes, but the functions involved are not modular forms,
and thus a completely different method of proof is necessary. The “circle
method” devised by Hardy and Littlewood in the early 1920s provides the
machinery to compute an asymptotic formula for sums of higher powers that
is analogous to Theorem 1. In Section 5 we describe how this method gives
the result for sums of kth powers and we show that the more general theorem
agrees with Theorem 1 when k = 2. Unfortunately, the Hardy-Littlewood
method does not allow us to compute any formulae analogous to those in
Theorem 2.

2 Theta Functions

Our approach to counting representations of sums of squares begins by ex-
amining the properties of theta functions. The exposition in this section
(loosely) follows that of Sarnak [S2, §1.3]. Further details, especially with
regard to Proposition 2.4, can be found in [, §10]. Twaniec treats a very gen-
eral class of theta functions; where necessary we have specialised his results
to the cases in which we are interested.

We begin by defining the n-dimensional analogue of the classical theta
function.

Definition. Let H denote the upper half-plane of C. For any positive integer
n, let

0,(z) =y  erimb (2.1)

me%n

for any z € H.

This series converges absolutely for all z € H. Tt is clear from the defini-
tion that 0,(2z) has a Fourier series,

o0

0,(22) = > ane’m (2.2)

mMm=—0

Since each vector in Z" of length y/m contributes 1 to a,,, the series (2.2) has
the property the Fourier coefficients a,, are exactly the number of represen-
tations of m as the sum of n squares. If we let ©,,(z) = 6,,(2z) and show that



0,(z) is a modular form for a certain congruence subgroup of S1.5(7Z), then
we can use the theory of modular forms to analyse the Fourier coefficients

o -

The key property of modular forms is how they transform under the
action of subgroups of S13(7Z). For example, a modular form f(z) of weight
k (k a positive even integer) for S1y(7Z) transforms as

[(32) = (ez + D)} f(2) (2.3)

for vy = (%) € STy(7Z). We therefore wish to discover transformation prop-
erties of the functions 6,(z), with the goal of showing that these functions
are modular forms. We first observe that

0,(2) = 0, (2)". (2.4)

This observation allows us to focus our attention on the transformation prop-
erties of 01(z). The simplest of these properties is clear from the definition:

Oi(z42) =0(2). (2.5)
Next we use the Poisson summation formula to derive a slightly more

complicated transformation property. The formula is as follows.

Result 2.1 (Poisson summation formula; cf. [I, §1.1]). let f : R — C
be a C' function, and let

fy) = | / Z Fla)e 2™V da.

Suppose that for any N >0, |f(x)| and |]E("r)| are both less than C - |.7:|7N
for some C' (depending on N). Then

Mo rmy=>" f(m).

mMm=—0 mMm=—0

We will also need the Fourier transform of the Gaussian function.

Lemma 2.2. For x € R and fived constants ¢ € R and o € C\ {0}, let
flx) = —molr ) and define f(y) as in Result 2.1. Then

2micy—my®
e’ﬂ'?(‘y ™Y /(y.

1
f(l/):ﬁ



(Here and throughout this essay, v/- denotes the principal branch of the
square root, with argy/z € (—7/2,7/2]. For k a half integer, we define

- (V)
Proof. Korner [K6, Lemma 50.2] computes

e e P2y — =12

7).

Making the changes of variable t = (v 4+ ¢)\27a, ( = y+/27/a gives the
result. O

We combine these two results to deduce a transformation property of the
theta function.

Proposition 2.3.

O (—1/z) =V —iz0:(z2).
Proof. et o =i/z and ¢ = 0 in Lemma 2.2. Then we have

f(T) = 6’77:7””’2/2

and thus by the definition of 8, (equation (2.1)) and the Poisson summation
formula (Result 2.1), we have

1(—1/2) Z e Z Flo) = V=iz0i(2).

rT=—00 rT=—00

O

In principle, equation (2.5) and Proposition 2.3 allow us to compute the
transformation of §; under the group I'y C ST1y(7Z) generated by (1) and
(97, ). However, the computations are bulky, and we desire a more explicit
formula. Tf we consider the action of the slightly smaller group T'(2) C T'4,?

FQ—{VESL2(Z):7: (3) ?) (mod 2)}7

then we may derive the following transformation property:

where

2Gunning [G, §5] shows that [STo(7): Ts] = 3 and [Ty : T(2)] = 2.



Proposition 2.4. Let v = (%) € T(2) (i.e. a = d =1 (mod 2) and
b=c=0 (mod 2)). Then

2¢

fu(72) = <7> S e 7 0(2),

where (%) is the Jacobi-Legendre quadratic residue symbol for positive odd d

(see [W]) extended to all odd d by
c c [ ¢
=) = —|— ] ifec#0
<d> ] (d) ifes0,

A 1 ifd=+1
d) 0 otherwise,

[ 1 ifg=1 (mod4)
“T if ¢=3 (mod 4).

and

2miz

Proof. To simplify notation, we define e(z) = ¢ We start by using

ad — be =1 to rewrite vz as

_(J,Z—I—b_ a 1
727cz+d7 ¢ clez+d))

Then we have

01(vz) = i ¢ (%2 (g - m» . (2.6)

Since ¢ =0 (mod 2),

a(m + cx)? B (1,m2+ +(1,c.7:2 B am?
‘ 2% T\ e T T ) T e

2

for any = € Z, and thus e(%%

) depends only on m modulo ¢. We can
therefore rewrite (2.6) as

bi(yz) = Y %%)




We can apply the Poisson summation formula (Result 2.1) to replace the
term in the inner sum by its Fourier transform (see Lemma 2.2), which gives

- 5 ()DL ()

g (mod ¢)

Splitting m into its congruence classes modulo ¢, we obtain

S S () ()

(mod ¢) ! (mod ¢)

Since (¢,d) = 1, we can substitute I’ = | — dg and still be summing over
all congruence classes modulo ¢. Making this substitution (and applying

ad —be = 1) gives

bi(v2) = 1 EE, Z 3 <—+bql+ bd/2>

(mod ¢) I’ (mod ¢)

cz+d ag
= - th(z) Z 6’(%)7

g (mod ¢)

since all of the variables are integers and b = 0 (mod 2). Again since
(e,d) = 1, we can make the substitution g = dx and still be summing over
all congruence classes modulo ¢. Thus the term ag?/2¢ becomes ad?z?/2¢ =

bdx?/2 + dx?/2¢. Since b =0 (mod 2), we have

by — [T de‘@, >y E (2—?) (2.7)

1C

The sum in this equation is a Gauss sum; to evaluate it, we wish to use
the following formula:

Result 2.5 ([I, Lemma 4.8]). Let p,g be integers with (2p,q) = 1 and

qg>0. Then
7))
el—)=1{=)eva
2 (q q) VI

t (mod q)

where (s) and €, are defined as in Proposition 2.4.

The sum in equation (2.7) does not satisfy the hypotheses of the Result
2.5, so we must manipulate the expression a bit. The key observation at



this stage is that we now have two ways of using equation (2.7) to evaluate
the expression 01(y(—1/2)), namely, substituting —1/z for z and applying
Proposition 2.3, and substituting v/ =~ (9 ') = (Z :’i) for v. Making these
substitutions gives the following identity:

dz — ¢ —c/z+d

— o (Ng(—ed) = |~ L 170, 0
rd ic
c—dz
- - 91 (Z)Q(dv (.)7
where )
pr
g(p,q) = e (—) :
x (mod q) q

It follows that

g(d,c) = \/%g(c, d).

By assumption, d is an odd integer, so we may substitute 2z for = in the
expression for g on the right hand side, which gives

g(d,c)—\/% ) )e(QZCt2>. (2.8)

7z (mod d

The right hand side of equation (2.8) satisfies the hypotheses of LLemma 2.5,

g(d,c) = Vic (2—;> 3.

Substituting this expression into equation (2.7) gives

so we conclude that

2¢
01(v2) = Vez +d (%) 6;1.
Taking the nth power of both sides proves the proposition (cf. equation (2.4)).

O

As we observed above, the function whose Fourier coefficients count repre-
sentations as sums of squares is not 6,(z) but rather 0,,(z), which we defined
to be equal to 0,(2z). We may deduce the transformation property of ©,(z)
from Proposition 2.4.

Corollary 2.6. Let v = (%) € T'g(4) (i.e. c=0 (mod 4)). Then

C

0, (72) = <3> 7" (cz + d)"2 0,(2). (2.9)



Proof. By definition of 0,(z),

a(2z) + 2b

0u(v2) = 0a(272) = 0, (W

) =z,

where v/ = <c72 2;’) Since 4|e, 4" € T'(2), and we may apply Proposition 2.4
to deduce the result. 0

Note that for n divisible by 4, Corollary 2.6 gives
Ou(72) = (cz + )20, (),

which is the familiar transformation property for modular forms of even

weight (cf. equation (2.3)).

A function that satisfies the transformation property given in equation
(2.9) for a subgroup I' C I'y(4) is said to be a modular function of weight n /2
for I'. However, this transformation property is not enough to make 0,(z) a
modular form; we also need to examine the function’s behaviour at the cusps

of T'g(4).

A modular form of even weight for S15(7) is said to be holomorphic at oo

2minz and a,, = 0 for all n < 0. In a more

if it has a Fourier expansion > a,e
general congruence subgroup I' C S15(7Z) there may be multiple cusps, each
corresponding to an equivalence class of s € QU {oo} under the action of T.
To define holomorphicity at a cusp other than infinity, we make a change of
variables that moves the cusp to infinity and divide out by the automorphy

factor.

Definition. Let I' C S15(7Z), and let f: H — C be a modular function of
weight k for T. Given s € QU {oo}, choose § = (* 1) € S14(Q) such that
s =0(oc0). Let w =46""z be the local variable at s and define f|[§], : H— C
(read “f hit by delta”) by

F1I8], () = f(dw)(ew + d)".

We say f is holomorphic at the cusp s if there is some positive integer M
such that

o0

f |[($]k (11}) — Z (]%6)27“777,7“/]\//'7

Nn=—0o0

and a, = 0 for all n < 0. The coefficient ag = f|[6], (c0) is the value of f
at the cusp s.



In general, the coefficients in the Fourier expansion, and therefore the
values at the cusps, will depend on the choice of local variable w. Actions of
successive changes of variable behave nicely (see for example [K, Proposition
IT1.16]), but we will not need such results. Our aim now is to show that the
function 0,(z) is holomorphic at the cusps of I'g(4). To do so we need to
find out what these cusps are; it turns out that there are three equivalence
classes.

Lemma 2.7. Let s € Q. Write s = p/q, where (p,q) = 1. Then s is
I'o(4)-equivalent to one of the following:

1. oo, if4lg;
2.0, if q is odd; or

3.1/2, if g =2 (mod 4).
Moreover, no two of oo, 0, and 1/2 are I'g(4)-equivalent.
Proof. Since (p,q) = 1, we may choose integers a, b such that ap+ bg = 1.

1. Suppose 4|q. Let v = ( @ b). Then v € To(4) and v (p/q) = oo.

—q P

2. Suppose ¢ is odd. By replacing @ with a+kq and b with b—kp (for some
k) if necessary, we may assume that a = 0 (mod 4). Let v = (Z ;}p>.
Then v € T'g(4) and v (p/q) = 0.

3. Suppose ¢ = 2 (mod 4). Then a is odd. By replacing a with a + ¢
and b with b — p if necessary, we may assume ¢ = 1 (mod 4). Let

Y= (2(1,(1;(1 /p-ﬁ?b)‘ Then ~ S r0(4) a,nd FY(p/Q) = ]/2

It remains to show that oo, 0, and 1/2 are all inequivalent. Any maftrix
v € SLy(7Z) that takes p/q to oo must be of the form v = (f’q ;;), so if 4 does
not divide ¢ then v & T'g(4); thus 0 (= 0/1) and 1/2 are not equivalent to
oo. Similarly, any v € S1o(7Z) that takes p/q to 0 is of the form v = (Z 7,)77)7
so if ¢ is even then @ must be odd and thus v & I'g(4). We conclude that 1/2
is not equivalent to 0. O

We can now show that ©,,(z) is holomorphic at all three cusps, and in fact

calculate its value at each. We will use these values in Section 3 to express
theta series in terms of Fisenstein series.

10



Proposition 2.8. For any positive integer n, 0,(z) is holomorphic at all
cusps of U'o(4). Furthermore, the values at the cusps are

1. ©,(c0) =1,

Kg 0;_>L,/2 (c0) =i~"/%, and

[(2%)], (00) = 0.

3.0,

Proof. By Lemma 2.7, it suffices to show that ©,(z) is holomorphic at oo,
0, and 1/2, and by equation (2.4) we need only consider 0;(z). Tt is clear
from the definition that ©;(z) is holomorphic at oo, since

o0

@1(2) = Z eQmm‘Qz —14+2 i e?ﬂim?z.
m=1

mMm=—0

The constant term is 1, so

O1(o0) = 0,(0) = 1.

Let 6 = <g 70;_>, and note that §(co) = 0. Then in the local variable at

7ero,

1
= _ /20
0, [5]1/2 (w) = (2w) 0, <m>

Applying Proposition 2.3 gives

0, [5]1/2 (w) = \/—_7:91(211)) = \/—_7:(91(11)).

Applying the definition as we did above at infinity, we see that ©; is holo-
morphic at zero and

0, [5]1/2 (OO) =i '

Taking the nth power gives

0,

8],pa (00) =i 712
To evaluate 0,(z) at the cusp 1/2 we will need the following lemma.

11



Lemma 2.9. 0,(z — 1) = 20,(4z) — 0:(z).

Proof. From the definition,

o0

N S
91 (Z o ]) — E eI 2 g im
m=—o00
— E ewim?z - E ewim?z
m even m odd
%)
-2 -2
- 9 E eTimez E Ttz
m even m=—o00

= 26:(4z) — 0:(2).

Now let § = (}7), and note that §(co) = 1. Then

O1 |[0], ) (w) = (211)+])1/2(;)1< v )

2w + 1

2
— (211}—|— ])71/291 ( v )

2w + 1

Applying Proposition 2.3, Lemma 2.9, and Proposition 2.3 again gives

1
e _ —1/2 :
O |[0],/5 (w) = (2w+1) \/z (] — %> 0, (
/9 5 72 o (- 1
2w ! w ! 2w
7 ) w i
= \/% (2 5 0, <§> — /21w

= Oy(w/4) — O1(w).

From this last expression we see that ©¢(z) is holomorphic at 1/2.

leading coefficients cancel, giving

04 [5]1/2 (00) =0, [5]77,/2 (00) = 0.

1
S I,
2w

0, (211}))

)

(2.10)
The

O

We have now shown that ©,(z) is a modular form of weight n/2 for I'4(4)

according to the following definition:

12



Definition. Let n be a positive integer, and let v = (5) € T'o(4) (i.e.

ad —be =1 and 4|c). Define the automorphy factor j(v,z) by

i0n2) = (5) ' Ve 4, (2.11)

where (%) and ¢y are defined as in Proposition 2.4. Let k be half a positive
integer. Then a modular form f(z) of weight k for 1'4(4) is a holomorphic
function f:H — C satisfying

I f(yz) = j(v,2)*" [(2) for any v € To(4),

2. f(z) is holomorphic at each cusp of T'o(4).

If fis a modular form that vanishes at all cusps of T'o(4), then [ is a a cusp
form.

Since (%) €4 18 a fourth root of unity, when k is an even integer this def-
inition agrees with the usual definition of modular forms of even weight for
a congruence subgroup I' C ST1y(7Z). This definition in the same form can
be used to define modular forms for half-integer weight for any subgroup
I' C Ty(4) of finite index. For half-integer weight forms for a general dis-
crete subgroup I' C ST5(R), the factor (%) ¢4 1s replaced by a more general

“multiplier system”; for details, see [I].

It is clear from the definition that the space of modular forms of weight
k for T'g(4) is a vector space over C. In fact, this space is finite dimensional.

Proposition 2.10. Let My(1'4(4)) denote the space of modular forms of
weight k for T'o(4). Then dim(M(T9(4))) < oo.

Proof. We first observe that given k and [, for [ € My(T'y(4)) and g €
Mi(To(4), fg € Mii(To(4)). Choose some nonzero fo € My(T'g(4)). Then
the map f = (fo)**f is an injection from M (T'9(4)) into Masr(T9(4)). Since
k is a half integer it therefore suffices to show the result for 12|k.

Let g = ¥ and define

o0

Alg)=q 0 o™

n=1

It is well known (see e.g. [S2, Appendix 1.1]) that A is a modular form
of weight 12 for S1,(7Z), and thus also for any congruence subgroup I' C

13



STo(Z). 1t is clear from the definition that A vanishes at oo, and thus A is
a cusp form for any I' C ST5(7Z). In addition, A is nonzero everywhere on

H.

Suppose 12|k, and let f be a modular form of weight & for I'g(4). For each
cusp s of I'g(4), choose § € ST1,(Q) such that ds = oo, and let the Fourier
expansion of f at the cusp s be

FI81, () = an(s)e*™ ™.

Suppose that for each s, a,(s) = 0 for all n < hk/12, where hg is the order
of the zero of A at the cusp s. Then the function f- A=%/2 i holomorphic

on H and at all cusps, and therefore
frATHT e Mo(To(4)) = C,

so f =c- A2 for some ¢ € C. Tet N = >, hs and define a linear map
Y Mp(To(4)) — CV that sends a modular form f to the vector consisting
of its first hok/12 Fourier coefficients at each cusp. Then ker(zp) = C- A*/12

and we conclude that

&WMMWM)<1+%§%5 (2.12)
< 0. ’

O

For even k > 2, one can use the Riemann-Roch Theorem (see [Mi, The-
orem 4.9]) to calculate an explicit formula for the dimension of the space of
modular forms of weight k. We will need this result to prove the explicit
formulae in Theorem 2. (In the specific cases we consider the dimension can
be computed by more elementary means; see Proposition 3.10 below.) To
prove the order of magnitude estimates in Theorem 1, all we need is that the
space of modular forms is finite dimensional.

3 Eisensteiln Series

An important example of modular forms of half-integer weight is the set of
Fisenstein series. FKisenstein series are always non-cuspidal modular forms
(i.e. the constant term in the Fourier expansion is nonzero), and it turns out
that they span the space of non-cuspidal modular forms. This is useful for

14



our application to representations of integers as sums of squares because (as
we will see in Section 4 below) the Fourier coefficients of cusp forms are of
strictly smaller order than those for Eisenstein series, and thus the Fourier
coefficients of the theta function are dominated by those for the Eisenstein
series.

In this section we define the Eisenstein series for I'g(4), show they are
modular forms with appropriate behaviour at each cusp of I'g(4), and calcu-
late their Fourier coefficients. The formulae simplify nicely for the series of
even integer weight, while for the other series we can deduce only an order of
magnitude estimate. Our exposition of the Fisenstein series and demonstra-
tion of their properties follows that of Sarnak [S2, §1.4], while the calculation
of the Fourier coefficients follows Koblitz [K, §ITI.3 and TV.2].

We begin by recalling the standard definition of Fisenstein series for even
integer weight k:

1 1
I B E I
k(Z) QC(k) - (mz—l—n)k’
(1) £(0,0)

where ((k) is the Riemann zeta function. We may rewrite this sum (see [K,

§111.2]) as
1
Ek(Z) = Z (mz + n)kv

m>0
(m,,n):1

—2k

ko osk

and note that thisis a sum of j(v, z)”** over matrices v of the form (7). We

interpret this set of matrices as coset representatives of I'\,\STo(Z), where
', = {(2) {) ,J € Z} is the stabiliser of oo in S15(7Z). We are now prepared
to generalise the definition.

Definition. Let k > 2 be a half integer, and s € QU {oc}. Choose § €
STo(Q) such that §s = oo. The Eisenstein series of weight k at the cusp s
for T'g(4) is

OS2y = Y j(r.h2)

YET s \T0(4)

where the automorphy factor j is defined by equation (2.11).

If we choose coset representatives for I'.,\T'o(4) of the form (%) with

(&

4|c and keep only one of each pair {(¢,d), (—¢, —d)}, then we may write the

15



series at infinity as

—2k
HSIEEEY (%) 2 (cz 4 d)F (3.1)
4le, d>0
(e,d)=1

The series E,im) converges absolutely for & > 2 since

EIiOO)(Z) < Z |cz—|—d|7k < Z |cz—|—d|7k7
4|e, d>0 o, de
(ead)=1 (e A)£(0.0)

and the last sum converges absolutely for k& > 2. By the same reasoning, E,is)
converges absolutely for & > 2 and any s € Q.

It is straightforward to check that the Fisenstein series satisfy the trans-
formation property of modular forms. We require a simple lemma.

Lemma 3.1. The automorphy factor j(v,z) satisfies
jlap, z) = j(o, Bz) - j(B, 2)

for any o, B € Ty(4).

Proof. For any function f we have

flapz) _ flopz) f(B2)
e fBa) 16

Using ©4(z) as our function f and applying the transformation property in

Corollary 2.6 gives the result. O

We use this lemma to show that each Fisenstein series transforms like a
modular form.

Proposition 3.2. Let k be a half integer greater than 2, let s € Q U {oo},
and choose § € S1y(7) such that s = oo. Then for any n € T'o(4),

B (nd2) = j(n, 02) B (52).
Proof. By the definition,

oz = N jlyandz)

YET s \T0(4)

16



and by Lemma 3.1,

B (ndz) = Z (7(777752))>2k

et oy 102

However, right multiplication by 7 just permutes the cosets of ', \T'o(4),
which does not change the value of the sum since we have absolute conver-
gence. We may therefore rewrite the sum as

BObz) = jn, 62 3" (j(v,82) 7,

YET s \T0(4)

giving the result. O

The above result shows that for a given choice of local variable w = §z,
the Kisenstein series at two equivalent cusps s, s are identical, so we can
refer to “the Fisenstein series at s,” meaning the series at all cusps that are
I'o(4)-equivalent to s. We now investigate the hehaviour at the cusps of the
Fisenstein series, which will allow us to rewrite the theta function in terms
of Eisenstein series and cusp forms.

Proposition 3.3. Let w = dz be a local variable at a cusp s of T'o(4), and
let E,is)(w) be the Fisenstein series of weight k (k > 2 a half integer) at s.

Then E,is)(oo) =1, and E,ﬁs)(s') = 0 for any cusp s’ not I'g(4)-equivalent to
5.

Proof. We carry out the calculations for the series at infinity; those for the
other series are identical.

The only term in the sum defining the Eisenstein series that does not go
to zero as z goes to infinity is that corresponding to the identity in I',\T'o(4),
or (¢,d) = (0,1) in the notation of equation (3.1). Splitting this term out of
the sum gives

—2k

E,&m)(z) =1+ Z <§> 63k (cz + d)fk.

Taking absolute values and adding terms where we have omitted values of ¢

and d gives

BO9(2) 4‘ < zii ez +d| * .

c=1 d=1

17



Let z =y for y € R,y > 0. By comparison with a double integral in the
variables ¢ and d, we see that for k& > 2 there is some constant (' > 0 such
that

o) /- C
E,S )(zy)—] < et

As y goes to infinity the right hand side goes to zero, so E,Sm)(oo) =1.

For the cusp at zero, we use § = ({ ') to change to the local variable

w=—1/z:
(o) I[6], (w) = w "k F(m)(—] Jw)
“k k “k

— Z <§> o 6?]k (dw + c)fk .

4|c, d>0
(e,d)=1

Since d is odd, all the terms go to zero as w goes to infinity. We thus have

< Qii dw + | ¥,

c=0 d=1

EC) (18, (w)

and since £ > 2, as w goes to infinity this sum goes to zero by the same

reasoning as above.

Finally, using 6 = () to change to the local variable at I gives

B8], (w) = (211}+])kE£m)< w )

2w + 1
T g —k
= Z <3> el ((e+2d)yw+d) ".
Ale, d>0
(e,d)=1

Since (¢,d) = 1, all terms go to zero as w goes to infinity, and thus the sum
goes to zero by the same reasoning as in the previous two cases. U

Taken together, Propositions 3.2 and 3.3 imply that the Eisenstein series
are modular forms. Furthermore, since each series is nonzero at a different
cusp, we can write any modular form as a linear combination of Eisenstein
series plus a form that vanishes at all cusps. We now carry out this calculation
for ©,(z). To simplify notation, we will assume that the Fisenstein series at

zero is defined in the variable w = —1/4z, and we will denote by E,io)(z) the

function E,SO) ‘ Kg 70;_” (2).
’ i
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Corollary 3.4. For any positive integer n > 4,

“n/2

O(2) = 5 () +i P ED () 4 Fupl2),
where F,, 5(z) is a cusp form of weight n/2 for T'y(4).

Proof. By Propositions 2.8 and 3.3, the function

Fupalz) = 0,(2) — BG) () — i PO (2)

77,/2

vanishes on all three cusps of I'g(4). By linearity of modular forms, F,/5(2)
is a modular form of weight n/2, and thus a cusp form. 0

We now wish to calculate the Fourier coefficients of the non-cuspidal
part of ©,(z). In general, the Legendre symbol and ¢; in the definition of
the Eisenstein series makes it impossible to compute a simple expression;
however, we can make an order-of-magnitude estimate. We compute the
coefficients for each of the two Eisenstein series separately.

Proposition 3.5. et E,ﬁm)(z) and E,io)(z) be the Fisenstein series of weight
k> 2 at oo and 0, respectively, for T'g(4). Then

E]Soo)(z) - 1 ‘I’ Z (I]@QWHZ7
=1

I
EISO)(Z) _ Z bl€27r7flz7
=1
where

_ (*27’['7:)]{11471 _k n o 2k 2milj/n 3.9
AR )LD i) 9t 32

n>0 0<j<n
4|n (j,m)=1
(*m)k k1 —k 2k J o —2milj/n
b = ml Z n el Z - e T (3.3)
n>0 odd 0<j<n
(7m)=1

Proof. From the definition of the Eisenstein series (choosing the pair of

{(e,d),(—¢,—d)} with ¢ > 0), we have

E =1+ Y <§>2k63k(62—|—d)k. (3.4)



Since the sum is absolutely convergent for & > 2, we may group terms for a
given ¢ by the value of d modulo e:

Y
F( ) =1 —I—Z Z Z <]—|—rh> 6?ichl(cz—l—j—|—ch)fk

>0 0<5<ec h=—c0
4|c ('7"0):1

We now observe that since ¢ is divisible by 4, €;4.5 and < > are indepen-

ok
dent of h. (For the latter we appeal to the multiplicative and reciprocity
properties of the Jacobi symbol, which can be found in [W].) We now have

k 00 . —k
CECEIED 3D Sl CHRNED Sl CESU) I
>0 0<j<e J h=—00 ¢
4|c (j,e)=1

To evaluate the innermost sum, we use to a formula that can be derived from
the series expansion of the cotangent:

Result 3.6 ([I, eq. (1.46)]). For z € H and k > 2 an integer,

—2
Z (Z—I—(],)ir _ 7T7 lk 1 27r7/z

Applying this result to expression for E,ﬁm)(z) gives

(0 _ ’ k(*Qm)k & k=1 2milz _2milj/e
R ST Sl (o B e s
' =1

>0 0<j<e
4e (j,e)=1

Bringing the constant and the factor [*71e?™!% to the outside and replacing
¢ with n gives the result.

To begin the analogous computation for the FEisenstein series at zero,

recall that we defined the series in the variable w = —1/4z:
(0 c\ % o —k
o (w) = Z p ¢l (cw+d)
4led>0

(e,d)=1

Hitting with § = <g *015> to change back to the variable z (i.e. the local
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variable at infinity) gives

EIiO)(Z) = (22)7F Z <§>2k63k <é+d>k

Sy () )

4|c,r]>0
(e,d)=1

We now let ¢ = 4m and note that (4m,d) = 1 if and only if d is odd and
(m,d) = 1. Furthermore, since (%) =1 for all d, (%) = (%) We thus have

FO(z)y =27+ % (%) O (e )k (3.5)

d>0 odd
(m,d)=1

As above, we group terms, this time for each d grouping by the value of m
modulo d,

[ole] . dh —2k
ZUCIEEND DI DD Sl (o B e e

d>0 odd 0<j<d h=—00

(7,d)=1
N —2k o] . —k
_ 2714 Z dfk 2k J ’ ¥)
= Y g) X gt
d>0 odd 0<i<d ' h=—00 '
(7,d)=1

Applying Result 3.6 gives

. —2k N 00
0 —_k —k . ¥) (727{_7/) — milz —2milg/d
By =270 3 atd Y <3> ri])!sz termil it
I=1

d>0 odd 0<;<d
(4,d)=1

Bringing the constant and the factor [*71e?™!% to the outside and replacing
d with n gives the result. O

We now wish to bound the growth of the Fourier coefficients that we have
just calculated, so that we may get an order of magnitude estimate for ©,,(z).
This task is a straightforward corollary of the above result.

Corollary 3.7. Let a; and by be defined as in Proposition 3.5 above. Then
for k > 2 there exist positive real numbers C,, Cy such that for anyl > 0,
)| < CIFT
by < CylF!
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Proof. The innermost sum in the expression for a; in (3.2) has absolute
value less than n, since each term has absolute value 1 and there are fewer
than n terms. Thus

21" e ik
| < " E .
|(]l| a (ki‘l)’ 77:177
The sum converges for k > 2, giving the result. The proof for O; is analogous.

O

The formulae in Proposition 3.5 are in general the most explicit we can
calculate for a; and ;. However, when k is an even integer, the Legendre
symbols and ¢; all drop out, so we can simplify the result further.

Proposition 3.8. Let a; and by be defined as in Proposition 3.5. Then for
k > 2 an even integer,

—2k
/ — 7‘1 ddk71
aj (Qk*])Bk %]: ( )
1/d even
—2k
(2% — 1) By o
1/d odd

where By, are the Bernoulli numbers, defined as the coefficients in the power

— B, —. 3.6
e” — 1 Z M (3.6)

Proof. For the coefficients a;, we begin with equation (3.4). We note that

. . . —2k
since k 1s an even integer, (%) = 6?/“ =1

(G =1 X et
/>0 even

(¢! ,d)=1

We wish to sum over all pairs (¢, d) with ¢ even, not just over relatively
7]{‘

series

. Evaluating at z/2 and letting
d = ¢/2 gives

prime pairs, so we multiply and divide by the sum over all odd j of j

R (2) - 1+( > 7) YOS Gl

7>0 odd 7>0 odd ¢’>0 even d=—o0

(et d)=1

B ”cu«)fzk: >y (nzum/)k’(g'?)

77>0 even m=——oo
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where in the last sum we have let m = (jd+1)/2 and n = j¢’. We now apply
Result 3.6 to deduce

() =1+ () () I S

n>0 even d=1

To rewrite the constant in front of the sum, we use the fact (see [, eq. (1.42)])
that for k > 2 an even integer,

Be= ~ Gmryet(h) (3.8)

where B} are the Bernoulli numbers. From this formula we deduce that

1 (2ma)* _ —2k .
C(k - ) C E
( (F)(2F 1)) ((k 1)') (2 =1)B

Replacing z/2 with z and letting [ = nd gives the result.

For the coefficients b;, we begin with equation (3.5) and again note that

. . . —2k
since k is an even integer, (%) = 6?/“ =1

all pairs (m,d) with d odd. We again multiply and divide by the sum over
all odd j of j7%

EO(z) = 2’“( >y j’“) > i (jdz — jm)~

7>0 odd 7>0 odd d>0 odd m=—oc
(m,d)=1

- ROE Z Z (nz — F , (3.9)

77>0 oddm/=—o

. This time, we wish to sum over

where in the last sum we have let n = jd and m’ = jm. We now apply Result

3.6 to deduce

20 = (ger) (m) 2 S

n>0 odd d=1

Applying equation (3.8) shows that the constant is equal to W Letting

[ = nd gives the result. O
The above results on Eisenstein series are valid for any half-integer weight

k > 2. For k = 2 the series converge only conditionally, so some extra com-
plications arise. There are two ways to approach the convergence problems.
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The first (see [K, §IT1.2]) is to define the Eisenstein series of weight 2 in the
usual manner, in which case the sums converge conditionally but do not sat-
isfy the right transformation rule. For the series at the cusp s in the local
variable w, we have

Eés)(’yw) = (cw + d)zﬁés)(w) + os(w),

where ¢, is the “error term.” Tt turns out that the error term is simple enough
so that given any two Eisenstein series, there is some linear combination for
which the error terms cancel, and thus this linear combination is a (non-
cuspidal) modular form of weight 2 for T'g(4).

The other way to deal with Eisenstein series of weight 2 (see [S2, Remark
1.4.4]) is to introduce the function

K= S ot Pl
Werm\r0(4)

and take the limit as 1 goes to zero. This limit exists and transforms cor-
rectly but is not quite holomorphic. However, the non-holomorphic part is
a single term in the Fourier expansion, so we may take any linear combi-
nation that annihilates the non-holomorphic part, which leaves (as above) a
two-dimensional space of modular forms of weight 2 that are not cusp forms.

To extend Corollary 3.4 to the case n = 4, we require the function
Eém)(z) — Eéo)(z) to be a modular form of weight 2 for I'g(4). Fortunately,

this is the case.
Proposition 3.9. let
00 0
REY(z) = BY(z) — BY(2),
Then ES(z) is a modular form of weight 2 for T'y(4).

Proof. From equations (3.7) and (3.9), we have

. B 3“ = 1 B 1
Fi(z) = WQZ _Z (2n2_+m> ((%])Hmf)(a-m)
2 o= = (1 —4n)z? —I—(Qn—Qm)Z—I—(m—]I)
Sy y

2772 — 2 —I—m) ((2n + ])Z—I—m)

Taking absolute values term by term gives

92>‘<§:§: Alm|+ Bn+C

e i— 4n2| | + 4mn Re(z )—I—m?>27
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for some positive constants A, B, C' (depending on z). (Note that we have
absorbed the non-quadratic terms in the denominator into the constants.)
It is clear from equation (3.10) that Ef(z +1) = Ej(z), so we may assume
without loss of generality that |Re(z)| < 1/2. Applying this fact gives

S A B C
A < 2max (=P B X e
If we make the substitution v = n, v = m — n, then

E;}(Z)‘ < Z Z Alu+ B o] + "

(3u? + v?)?

u=1 v=—00

A?/—I—Bv—l—(Y
= QZZ 7/ —I—v '

u=1 v=0

If we absorb the constant '’ into the other two constants and use the fact
that since A’, B’, u, v are all nonnegative,

A'u + B'v

— >min (A", B,
Vuz4 vz oo ( )

then we have

ZZ (u? + v?) 2/2

u=1 v=0

for some positive constant ). This last sum converges by comparison with

dv dy “dr
@rgpr )

where R is the ha]f—p]a,ne y > 0 minus a disc around the origin of radius .

the integral

Since the sum (3.10) converges absolutely for all z, EJ(2) is holomorphic
on H, and checking holomorphicity at the cusps is straightforward. To show
the transformation property, we use the definition of Eisenstein series to write

. (R
Ei(z)= > .7(%2)422.7<%;> :
YET s \T0(4)

Since the sum is absolutely convergent, we may apply the same reasoning
as in the proof of Proposition 3.2 to deduce that for n = (7)) € Ty(4),
Fi(r2) = (e + d)? BY(2). .
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Now that we have absolute convergence in the Eisenstein series of weight
2, we may extend the formulae in Propositions 3.5 and 3.8 to the case & = 2.

The calculations are for the most part identical, and we omit the details; for
a full treatment see [Mu, §1.15].

In general the cusp form F),5(2) in Corollary 3.4 is nontrivial; however,
it vanishes for certain small values of n, and the theta series is exactly equal
to the sum of the two Fisenstein series.

Proposition 3.10. Forn =4 or 8, the cusp form I, 5(2) defined in Corol-
lary 3.4 is identically equal to zero.

We give two different proofs. The first is computational, and the second
uses some more powerful results about Riemann surfaces to describe the
result in terms of dimensions of vector spaces.

Proof No. 1. The first proof requires a result about the number of zeroes
of a modular function f for I'g(4), which may be proved by integrating the
logarithmic derivative of f around the boundary of a fundamental domain

for T'g(4). (Milne [Mi, Prop. 4.12] uses the Riemann-Roch Theorem to prove

the result in greater generality, but we do not need this stronger version.)

Result 3.11 ([K, §IT1.3, Problem 17]). Let f(z) be a nonzero modular
function of weight k (k > 0 an even integer) for I'g(4). Let F be a funda-
mental domain for T'g(4), including the three cusps, and for p € F denote by
v,(f) the order of the zero or pole of f(2) at the point p. Then

k
Z ”p(f) = 9

peF

Since O4(z) is a modular form (of weight 2), it has no poles in any fun-
damental domain F. Furthermore, we have from equation (2.10),

04 [6], (w) = a1€”™" + higher powers of ™"

where 6 = (3 9). Thus O4(z) has a zero of order 1 at the cusp 1/2, and by
Result 3.11 it has no other zeroes. Tt follows that Og(z) = O4(z)? has a zero
of order 2 at the cusp 1/2 and no other zeroes or poles.

Proposition 3.8 (extended to weight 2 via Proposition 3.9) gives an explicit

formula for the Fourier coefficients of the modular form Eq(;;o?)(z) 4 qn/2 qu%(z)

for n = 4 or 8. One can easily compute that the first four coefficients a,, do
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in fact give the number of representations of m as the sum of four or eight
squares. Thus in both cases the function

0.(2) ~ B (=) 2B ()

“n/2

has a zero of order four at co. Since ©,(z) has at zero of order n/4 at 1/2
and no other zeroes, the function

ooy =1 P () =BG
N 0,(z)

has a zero of order four at oo, a pole of order n/4 at 1/2, and no other poles.

Since ¥(z) is a modular function of weight zero and has fewer poles than
zeroes, by Result 3.11 it is identically equal to zero. We conclude that

00 -, 0
0.(2) = EG) (2) + 2R (2),

and the cusp form F, 5(z) is identically equal to zero. O

Proof No. 2. Milne [Mi] uses the Riemann-Roch Theorem and the corre-
spondence between modular forms of weight k and k/2-fold differential forms
to derive the following dimension formula:

Result 3.12 ([Mi, Theorem 4.9]). let k > 2 be an even integer, and
I' C S1y(7Z) be a congruence subgroup. [If My(T") is the space of modular
forms of weight k for T' C STy(7Z), then

1

dim(Mu(T)) = (k—1)(g — 1) + %mG +) E (1 - —>J :

€p
where g is the genus of T\H*, v, is the number of inequivalent cusps of T,
the sum is over elliptic points p of T, e, is the order of the stabiliser of p,
and | 2] is the greatest integer function.

For the group I'4(4), Milne computes [Mi, Example 2.23] that the genus

g is zero, and there are no elliptic points.” Since T'g(4) has three cusps, we
have for k even,

. k

dim(M(To(4)) =1+ 2 (3.11)

For k = 2 the space of non-cusp forms is two-dimensional (cf. discussion he-

fore Proposition 3.9), and therefore it is equal to the entire space My (T'o(4)).

For k& > 2 the three Fisenstein series are linearly independent non-cusp forms,

and thus for & = 4 they span the entire space M4(I'9(4)). Thus for n =4 or

8 the cusp form F),/5(z) must be identically zero. O

FActually, the computation is carried out for T'(2), which is conjugate to T'g(4).
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The second proof of Proposition 3.10 leads to an interesting observation:
From Result 3.11 we see that that the zeroes of the weight-12 modular form
A have total order 6, and therefore equation (3.11) implies that the upper
bound (2.12) that we computed for the dimension of My(T'4(4)) when 12|k

is in fact an equality.

We now have all the ingredients necessary to give the formulae for the
number of representations of an integer n as the sum of 4 or 8 squares.

Proof of Theorem 2. By definition, the number ry(n) is the nth Fourier
coefficient of the function ©4(z). By Proposition 2.8 and Corollary 2.6, O4(z)
is a modular form of weight s/2 for I'g(4). By Corollary 3.4 (using Proposition
3.9 to extend to weight 2),

0.(2) = B3 (=) + i B () + Fupal2),

where F,/5(z) is a cusp form. By Proposition 3.10, F,/5(z) is identically
zero for s = 4 or 8. The Fourier coefficients a,, of O4(z) may therefore be
calculated from Proposition 3.8.

For s = 4, Proposition 3.8 (extended to weight 2 and using equation (3.6)
to compute By = 1/6) gives

a =81 Y d— ) (-1

n/d odd n/d even

If n is odd, the second sum is zero. If n = 2%m for odd m, then each divisor
d of m corresponds to divisors 2°d,2°7'd. ... 2d,d of n. The contribution to

the sum is thus 8d(2" — 20T 924 1) = 24d. We conclude that
8 Z d  for n odd
r]|n
n = 24 Z d for n even.
r]|n
d odd

For s = 8, Proposition 3.8 (using equation (3.6) to compute B, = —1/30)
gives

a =16 Y & Y (1)

d|n d|n
n/d odd n/d even
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We note that in the first sum n — d is even, and in the second sum n — 2d is

n—2d

even, so we may multiply by (—1)""% and (1) respectively to conclude

@y =16 (—1)""d*

d|n

4 Fourier Coefficients of Cusp Forms

Corollary 3.4 gives an expression for the theta function as a sum of Fisenstein
series and cusp forms, and Propositions 3.5 and 3.8 give formulae for the
Fourier coefficients of the Eisenstein series. For these formulae to be useful
in calculating the number of representations as sums of squares, we must
show that the Fourier coefficients of cusp forms are not too large. There are
results of varying depth and generality for this problem, but it turns out that
the simplest bound is enough for our purposes, since for k& > 2 it is strictly
smaller than the bound for the Eisenstein series derived in Corollary 3.7.

Our discussion of the Poincaré series follows that of Sarnak [S2, §1.5];
Iwaniec [I, §3] treats the topic in greater generality. Our treatment of Kloost-
erman sums and bounds for the Fourier coefficients of cusp forms roughly
follows that of Twaniec [I, §4-5].

Proposition 4.1. Suppose

[S9)
f(Z) — Z aﬂ[@?winz
n=1

is a cusp form of weight k for T'o(4). Then there exists some positive constant
C' such that
la,| < C - nh/?.

Proof. Since Tm(yz) = Tm(z)/ ez 4+ d|* for any v € SLy(R) and f(z) is
a modular form of weight k, the function F(z) = |f(2)[Tm(2)*/? is To(4)-

invariant. Since f(z) decays exponentially at the cusps, F'(z) is bounded on

all of H; say |F(z)] < M.

For the Fourier coefficient a,,, we have

141y )
a, = / 6)727r7,nz]('(2)d27
7

Jay
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where z = = +y. Thus
1
o < [ il de < M2y
Jo

Setting y = 1/n gives the result. O
We now have all of the necessary tools to prove Theorem 1.

Proof of Theorem 1. By definition, the number ry(n) is the nth Fourier
coefficient of the function ©4(z). By Proposition 2.8 and Corollary 2.6, O4(z)
is a modular form of weight s/2 for I'y(4). By Corollary 3.4 (and its extension
to weight 2 in Proposition 3.9), for s > 4,

0.(2) = B () +i =) + Fual2),

s 3/2

where Fy5(z) is a cusp form. By Corollary 3.7, the nth Fourier coefficients of

EE(/);)(Z) and Ei%(z) are () (77/”/2*1>7 and by Proposition 4.1, the nth Fourier

coefficient of F,5(2) is ()(n”‘/“)_ 0

Note that for s = 4, Theorem 1 splits r4(n) into two terms that are both
O(n), which is not particularly useful; however, by Proposition 3.10 the term
corresponding to the cusp form vanishes. For s > 4, the term corresponding
to the Eisenstein series dominates, and Propositions 3.5 and 3.8 give formulae

for r4(n) with error no more than a constant times ns/4.

4.1 Poincaré Series

The bound in Proposition 4.1, though it is strong enough to prove Theorem
1, is not the best possible, and we devote the remainder of the section to
improving the bound. These improvements provide only marginal gain when
counting representations as sums of five or more squares, and by Proposition
3.10 they are not necessary for counting sums of four squares. However, an
improvement on Proposition 4.1 is essential to get a nontrivial estimate of
representations by more general quadratic forms in four variables, since the
cusp forms that vanish for sums of squares may not do so in the general case.

We begin by showing that the space of cusp forms is spanned by a set of
forms called Poincaré series. The construction of the Poincaré series is very
similar to the construction of the Fisenstein series.



Definition. Let m be a nonnegative integer and k > 2 be a half integer. For
s € QU {0}, choose § € ST5(Q) such that §s = oo. The mth Poincaré
series of weight & at the cusp s for I'g(4) is

PTE:’)]{(Z) _ Z ](77 52)72k€27r77m,'y527

YET s \T0(4)

where the automorphy factor j is defined by equation (2.11).

To see that the series is well-defined, note first that for vy = (2% ) and v, =
a—a’ bfb'>

¢ d
is a nonzero matrix with determinant zero. Since all entries are integers and

(”! ’;;) in the same coset of I', 7102 — Yd2z = 1342, where 73 = (
(e,d) =1, 93 = ("¢ %) for some integer r. Thus e (my36z) = e(rm) =1, and
e(mvyidz) = e(my26z).

Note that for m = 0 the Poincaré series are the Eisenstein series. Fach
term of a Poincaré series has absolute value less than or equal to the cor-
responding term in the Eisenstein series, so each series converges absolutely
for k> 2 and all m. (As with the Eisenstein series, we may extend to the
case k = 2 via careful summation, but we will not need this result.) That
the Poincaré series are of any interest at all is due to the following result:

Proposition 4.2. For m > 1, k > 2, and any s € QU {oc}, the mth
Poincare series of weight k at the cusp s for T'g(4) is a cusp form.

Proof. By the same reasoning as in the proof of Proposition 3.2, for n €
r0(4)7

(s) . ](777 (SZ) o 2mimyndz
Pm,,k(n($2> - Z ) € ?

et oy 102

and since right multiplication by n merely permutes the cosets of ', \T'g(4),
we find

P (n82) = j(n,62)* PY)(52). (4.1)

m, m,

We now calculate the values at the cusps for the Poincaré series at infinity;
the calculations for the other series are identical. Let s be a cusp of T'g(4),

and & = (") € SL,(Q) such that §(co) = s. Let w = d 'z be the local

variable at the cusp s. Then

PTE:? [[6], (w) = (cw + d)fk Z j(%57111))72]“627”77””5717“.

YET s \T0(4)



For any matrix v = (25) € GLy(R), let j'(v,2) = |cz—|—d|1/2. Taking

absolute values of the Poincaré series term by term, we have
P |8, (w)] < 3(@w) ™ N7 (g, 6 ) e,
YET s \T0(4)

where o(v) = ITm(~v5~"w). A simple computation shows that for any matrices

@, 3,
J(afz) = j'(a,8(2)) - 7'(8, 2).

Applying this relation gives

.7"(57 w) —2k . 1 —2k _—2mma(v)
= m Z .7(’75 ,w) e ,

YET s \T0(4)

P11, ()

.jl(($7 “)) o —27mma (o) -/ 571 —2k
< W) € + Z 70 w) ;

vET o \T'0(4)
NEVAT
where in the second line we have split out the term (if any) corresponding
to a g such that 440" € T'o. If we let w = 4y, all the terms inside the
summation go to zero as w goes to infinity, so by the same reasoning as in
the proof of Proposition 3.3, the sum is bounded by Cy~**2 for some constant

C'. Furthermore, the coefficient 7/(8,4y) /7' (6", iy) is equal to 1, so we have
C

yk72 :

Pk 18] (w)] < e2mr0o)
The second term clearly goes to zero as y goes to infinity, and since o0~
is in the stabiliser of infinity, the first term also goes to zero as y goes to
infinity.

Carrying out the above calculation for each Poincaré series, we conclude
that PTE;)k is holomorphic at all cusps of I'4(4), and furthermore, that its value
at every cusp is zero. This result and the transformation property (4.1) imply
that all of the Poincaré series are cusp forms. O

Next we show that the Poincaré series span the space of all cusp forms.
To do this we use the Petersson inner product (-,-) on Sp(I'g(4)), the space
of cusp forms of weight &k for T'g(4). This inner product is defined by

B L Z—dedy
()= [ i

To (4)\H
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for f.g € Si(T'o(4)). The integral is well-defined because for v = (25) €
STo(R) we have
Im(2)

Tm(’YZ) = ma

and thus the function y* f(2)g(z) and the differential y=2dx dy are Ty(4)-
invariant. The integral converges (absolutely) since f and g are cusp forms
and therefore decay exponentially as y goes to infinity. It is clear from the
definition that this is indeed an inner product: it is bilinear, (f,¢) = m,
and (f, f) is a nonnegative real number that is equal to zero if and only if f
is identically zero. We now use this inner product to compute the projection

of an arbitrary cusp form f onto the Poincaré series.

Lemma 4.3. Lel k > 2 be a half integer, and let P(OZ)(Z) be the mith Poincaré

series of weight k at infinity for T'g(4). Suppose f € Sp(To(4)) such that
f(Z) — Z aﬂ[@?winz.

1

Then B
(7P = Tk—1)

(4mm)k=1 e

Proof. From the definition of the Petersson inner product and of the Poin-
caré series,

o , 2k, . drdy
(rhp)y = [ et e
roi4)\w’verm\r0(4) :
—2mimz (]T (]U
= / S
Foo\H '

[S9) o 1
= Z / / 2ri(nz—mZz) k (]7' (]1/
— ane ey

n=1" 0 J0O y

where the absolute convergence of the sum and the integral have allowed us
to interchange the order of summation and integration. The only term that
does not vanish identically is n = m; in that case, using z — Z = 21y and the
definition of the Gamma function gives

e Ik —1
/ / 6747rm,yyk72dm (]U — ( ) 7
Jo Jo (4mm)~!

from which the result follows immediately. O
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From this lemma, we deduce that all cusp forms are linear combinations
of Poincaré series.

Proposition 4.4. For k > 2 a half integer, the space of cusp forms Sp(I'g(4))

is spanned by the Poincare series PTE:? form € N.

Proof. Let V C Sy (T'g(4)) be the linear subspace spanned by the PTE:?. By
Proposition 2.10, Si(T'9(4)) is finite dimensional, and therefore if there is
some nonzero [ € Si(T'g(4)) \ V, then there is some nonzero g orthogonal to
V. By Lemma 4.3, the Fourier coefficients of any such ¢ all vanish, and thus
g is identically zero, a contradiction. O

Note that we have not used any special property of the cusp at infinity,
and therefore Proposition 4.4 also holds for the Poincaré series at any cusp s.
There are many open questions about Poincaré series which stem naturally
from the above results, including:

e What are the linear relations between the various Poincaré series?
o Construct a basis of Si(1'g(4)) consisting of Poincaré series.

e Which of the Poincaré series do not vanish identically?

For a summary of some of the known results to these questions, see [I, §3.3].

4.2 Kloosterman Sums

Since the space of cusp forms Si(I'g(4)) is finite-dimensional, Proposition 4.4
reduces the problem of bounding the Fourier coefficients of cusp forms to the
same problem for Poincaré series. We now show that this problem in turn
comes down to estimating certain exponential sums called Kloosterman sums
which arise in the Fourier expansion of the Poincaré series. In the remainder
of the section, we outline various methods for estimating Kloosterman sums,
each of which improves the estimate in Proposition 4.1. The discussion that
follows will not be as rigorous as that above; for more details see [S2] and [I].

Proposition 4.5. Let Py, (2) be the mth Poincaré series al infinity of weight
k> 2 for To(4). Then Pym(z)=>"", a,e¥™ " with

N\ T 4 /mn
apn = (sm,n + 271—7:7]{ <£> Z C71']k71 <w> S(m/? n, C)?
C

m
4|c

>0
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where J,(x) is the Bessel function of order v defined by

J(z) = Z j!r(;Jr]])er . <g>y+2j’

7=0"

and S(m,n,¢) is the Kloosterman sum

Smyme)= <§>2k e (M) . (4.2)

ad=1 (mod c)

Proof. From the definition of the Poincaré series, we have

Pem(z) = e(mz)+ Z Z Jjlyr, Z)fzke (myT2)

YET oo \T0(4) /T o TET

v#]1
cN\ 2k
— 6’(777/2) + Z <g> (SZ
=2 ) ET e\ To(4)/ T ne?,
c#£0

ma m

(c(z+n)+d) "e (T ele(z+n) + d)) ’

where we have used ad — be =1 to write

e (Z z) G) 717) T % (= —I—]n) td)z

Applying the Poisson summation formula (Result 2.1) gives

Pem(z) = e(mz)+ Z <§> - o Z

FET o \T0(4)/T o ne’
c#£0

ma m

[t te (B o)

and making the substitution v = z + v 4 d/c gives

fnle) = ema)+X 3 () AL

4|c ad=1 (mod c) ne7
>0
o411y
ma + nd L m
elnz 4+ — (cu) "e ——— —nu .
c J coriy c2u
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By Cauchy’s theorem, the integral does not depend on y, and thus for n <0
letting y go to infinity shows that the integral vanishes. For n > 0, the

o0 /n\ S A/ mn
2 ()7 0 (1),

ke \m

integral evaluates to

so if we define the Kloosterman sum S(m,n,¢) by equation (4.2), then we

have
2T o [ 1\ 5 dm/mn
Pr.m = € g . <_> A '715’ ERATRN Jp I
vm(2) = €(mz) + e ; — P(WZ);(‘ (m,n,c)dp ( . )
c>6
which proves the proposition. O

Since there is a well-known bound for the Bessel function, estimating
the Fourier coefficients of cusp forms becomes a matter of estimating the
Kloosterman sums. We focus on the case where the weight &k is an even
integer, in which case the Legendre symbol and ¢; drop out, and we have the
so-called “classical” Kloosterman sum

a + nd
S(m,n,c) = Z € <M> )
ad=1 (mod ¢) ¢

We note that the sum S(m,n,c) is a real number since for each pair (a,d)
with ad =1 (mod ¢), (—a, —d) is a different pair with the same property.

The Kloosterman sums satisfy some basic properties which simplify cal-
culations. If (a,¢) = 1 we have

Slam,n,c) = S(m,an,c), (4.3)
and if (¢1,¢2) = 1 we have
S(m,n,cie) = S (m,@zm c1> S (m,ﬁzm C2> , (4.4)

where & and & are multiplicative inverses of ¢; and ¢3 modulo ¢y and ¢y,
respectively. This multiplicativity property allows us to restrict our attention
to the sum S(m,n,p) where p is a prime. We will need the following lemma,
which bounds the number of distinct prime divisors of an integer c.

Lemma 4.6. For n a positive integer, let w(n) be the number of distinct
prime divisors of n. Then for any e > 0, there exists some C' > 0 such that
for all n,

wn) <clogn + C.
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Proof. Since the sequence of primes is strictly increasing, given any a > 1
there exists some r > () such that for any positive integer m, the product of
the first m primes is greater than ra™, and therefore any integer less than
ra” has at most m distinct prime factors. If we substitute n = ra”, then n
has at most (logn —logr)/log a distinct prime factors. Substituting a = e'/°
gives the result. O

Lemma 4.6 and the multiplicativity property (4.4) allow us to translate a
bound on the Kloosterman sums S (m, n, p”) into a bound on all Kloosterman
sums S(m,n,c).

Proposition 4.7. Suppose that for p prime and o a positive integer, the
Kloosterman sum defined in (4.2) (with k a positive even integer) satisfies

S(m,n,p”) < C-p™®

for some o € [0,1) and some positive constant C. Then the nth Fourier
coefficient of the mth Poincare series of weight k for I'g(4) satisfies

la,| < C"- n S

for some positive constant C" and any € > 0.

Proof. By the multiplicativity property of Kloosterman sums (4.4),
S(m,n,¢) = C“e

where w(e) is the number of distinet prime divisors of ¢. By Lemma 4.6,
there exists a constant D such that w(e) < eloge+ D, and thus |[S(m,n,¢)| <
D’ - ™t for some D',

The bound for the Bessel function is

1
J () < R-min (.7:”7 ﬁ) ,

for some positive R, which gives .J,(2) < R-z® for any § € [-1/2,v]. Setting
v=k—1and § = o+ 2¢, (where we have chosen ¢ so that o +2¢ < k — 1),
we have from Proposition 4.5,

la,| < R <£> B Z <47T\/777/77/>(T+2F '
m.

4|c
>0

The sum converges for any ¢ > 0, and thus for any given m and n we have
the result. O



For o« > 2 and p an odd prime, the Kloosterman sum S(m,n,p”) can be
evaluated explicitly for certain values of m and n; see [I, §4] for details. The
result is that for p a prime and o > 2 an integer,

§ (myn,p)| < 2702 (4.5)

for any m and n.

The Kloosterman sum S(m,n,p) cannot be evaluated explicitly in the
same manner, and the work on estimating Kloosterman sums primarily in-
volves improving the estimate on this sum. Kloosterman himself calculated
a nontrivial estimate using “power-moments” defined by

V/(P) = Z S(a’v ]7p)/.. (46)
a (mod p)
a#0
For ¢ = 4, one can compute (see [, §4.4])
Vi(p) =2p" —3p" —p — 1.
Dropping all but the term a = mn (mod p) in equation (4.6) gives
S(mn, 1,p)* < Vi(p) < 2p°,
and applying the property (4.3) gives

S(m,n,p)| < 2p™*

if (p,n) = 1. If p|n then

—1 if(p,m) =1
S(mmap)_{ p—1 if(g,m)#]-

Since there are only a finite number of such p they may be absorbed into the
constant, giving
S(m,n.p)| < C-p**

for all p. With this result and the bound (4.5), we may take ¢ = 3/4 in
Proposition 4.7, which gives

la,| = O <n§73€_+5> :

In 1948, A. Weil proved the Riemann hypothesis for curves over finite
fields, from which he deduced the so-called “Weil bound,”

S(m,n,p)| < 2p'/%. (4.7)
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This bound and equation (4.5) give ¢ = 1/2 in Proposition 4.7, and thus
la,| = O <n§737+5> :

Weil’s proof of the bound (4.7) is quite deep; Twaniec [I, §5.2] gives an ele-
mentary proof of the same bound by estimating sums of Kloosterman sums.

Finally, we note that for even weights k, the best possible bound for a,
is given by the “Ramanujan conjecture,”

la,| = O <n§7;_+5> :

This conjecture was proven in 1974 by P. Deligne.

If the weight & is odd or half an odd integer, the calculations are more
subtle but the idea is the same. One use multiplicative properties of the
Kloosterman sums (in this case also called “Salié sums”) to reduce the prob-
lem to estimating S(m,n,p”) for p prime. The crucial estimate (see [I, §4.6])
1S again
S(m,n,p)| < 2p'7,

which gives
la,| = O <n§737+5> :

For general n this is the best bound possible, while for n square-free it can

be improved (see [S2, Ch. 4]) to

la,| = O <n§7%+5> :

The analogue of the Ramanujan conjecture for half-integer weight £ is
aa] = O (n55+)

for n square-free, but unlike the conjecture for even weight k., this result has
yet to be proven. The best bounds to date for the function Az(n) in Theorem
1 are therefore



5 Sums of Higher Powers

In Sections 2 through 4, we used the theory of modular forms to count
representations of integers as sums of squares. A natural question to ask
is whether the results and methods generalise to sums of cubes and higher
powers. Indeed, there is an analogue of Theorem 1 for sums of an arbitrary
power, but the result cannot be derived via modular forms. Instead, one
uses the “circle method” devised by Hardy and Littlewood to compute an
order-of-magnitude estimate. The main result is:

Theorem 3. Suppose k and s are integers such that k> 2 and s > 2. For
n a positive integer, let v (n) be the number of solutions in positive integers
to the equation

rt:f—l—...—l—r/:f:n.
Then
1\° s\ !
rea(n) = &(n)T (1 n E) r (%) 2?5 b (),

where &(n) is an arithmetic function that is bounded above and below by
constants depending only on s and k, and h,z(n) = O@0**='=%) for some
e> 0.

As in the case of sums of s squares, the problem comes down to estimating
Fourier coefficients of a certain “generating function” raised to the sth power.
The generating function in the general case is

o0

fk(Z) = Z ezmjmkzl

m=0

From this definition, we see that fy(z)® has a Fourier series,

[S9)
fk(z)s — Z (]/7716)27“777,27
n=0

and that the Fourier coefficients a,, are exactly the number of representations
rr.s(n). Note that for & = 2, fi(z) is almost the function @4(z) we considered
in Section 2, the only difference being that we are now summing over positive
integers only.

One might hope that the function fi(z) (which converges for z € H) has
transformation properties that allow us to consider it as a modular form.
Indeed, we have the relation fi(z + 1) = fi(z) for all z € H. However,
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to derive the formula for ©,(—1/z) in Proposition 2.3 we used the Poisson
summation formula and applied the fact that the Fourier transform of the
theta function is another theta function, or, more precisely, that the Fourier
transform of a Gaussian is another Gaussian. In the general case, the terms
of fr(2) are not. Gaussians, and thus we cannot take a Fourier transform and
hope to recover some other form of fi(z). Our hopes of using the theory
of modular forms to estimate the Fourier coefficients of fi.(z)* are therefore
dashed, and we must turn to another method.

The following discussion of the circle method is based closely on that
of Nathanson [N, §4-5]. Vaughan [V, §2] and Davenport [D, §2-6] provide

similar expositions.

5.1 The Circle Method

The Hardy-Littlewood circle method estimates the Fourier coefficients of
fx(2)® by computing them directly via integration. Before describing the
method, we make a simplification due to Vinogradov, which is to replace the
infinite series fr(z) with a trigonometric polynomial. For any positive integer

N, let P = (/\ﬂ/]ﬂ, and let

pi(z) = Z € (mkz> :

(As before, e(2) = €*™2.) Then the first N Fourier coefficients of pj(z)*
match those of fi(2)°, and the problem of computing ry s(n) is reduced to
computing Fourier coefficients of pi(z)* for sufficiently large N. We thus
have

rk’s(n)—/o pr(a)’e(—na)da, (5.1)

which follows from the orthogonality relation,

/01 e (ma)e(—na)do = G,

(Here and throughout the remainder of this section, we implicitly assume
that we have fixed a specific n and chosen N = n.)

The idea behind the circle method is to divide the interval of integration
into two subsets: the “major arcs” 9 and the “minor arcs” m. The major
arcs consist of points o that are near a rational number with small denomina-
tor. (The terms “near” and “small” will be made more precise later.) These
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points give a nontrivial contribution to the integral. As a simple example,
consider & = 1/3 and k = 4. Since

m*\ 1 ifm =0 (mod 3)
“\3 )~ —2 4452 ifm=1or2 (mod3),

2

B

pa(1/3) is roughly equal to Ni/\/3, so the contribution to the integral is
O(N). The minor arcs, on the other hand, consist of points that are not
near a rational number with small denominator; these points give a negligible
contribution to the integral. For example, if a is irrational, the numbers
{e (nk(y> :n € Z} are uniformly distributed on the unit circle, and thus for
sufficiently large N, the sum as n ranges from 1 to N is very small relative

to N.

To construct the major and minor arcs explicitly, we assume n > 2% so
P > 2. Choose v € (0,1/5), and for every pair of relatively prime integers
(q,a) with 1 < ¢ < P and 0 < a < ¢, define
1
S Pkfv ’

M = U U M(q, a).

1<g<P” 0<a<q
(9.,0)=1

a
o — —

q

M(q,a) = {a €10,1]:

and let

The set M(q,a) is called a major arc (though it is actually an interval), and
M is the set of all major arcs. The major arcs thus consist of all a € [0, 1]
that are near a rational number with denominator smaller than P”. The
major arcs are disjoint, for if o € 9M(q,a) NIM(q',a’) and a/q # a'/q’, then
lag’ — a’q| > 1 and

1 1
2 < o
Pz qq
a a
N
q q
a a’
< (y——l—(y—l‘
q q
2
S Pk71/7

which is impossible since P > 2 and k& > 2.
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The width of the interval M(q, a) is 2P" %, except when ¢ = 1, in which
case the width is PY~%. The number of major arcs is

P¥ pv
1

< = —P"(P"+1),

q§_1 ©(q) q§_1q 5 ( )

and therefore the total measure of the set of major arcs is

PY(P" +1) - 2

. < o (5.2)

p(m) < 2Pt

Thus the measure of the major arcs goes to zero as n goes to infinity.

Next, we define the set of minor arcs to be
m=[0,1]\ 9.

This set is a finite union of (disjoint) open intervals and consists of all a €
[0, 1] that are not near a rational number with denominator smaller than P¥.
From (5.2), we see that the measure of the set of minor arcs approaches 1 as
n approaches infinity.

We may thus split our expression for ry 4(n) into two terms:

rrs(n) = /gm pr(a)’e(—na)da + / pr(a)’e (—na) da. (5.3)

We will see below that even though the minor arcs comprise the bulk of the
unit interval, their contribution to the integral is negligible, and estimating
rr.s(n) comes down to estimating the integral over the major arcs.

5.2 The Minor Arcs

When k£ =1, the polynomial

pr(ar) = Z e (mk(y>

i1s a geometric series and is thus easy to estimate. For & > 1, one can use
a “forward difference operator” to estimate pr(a) in terms of sums in which
m” is replaced by a polynomial in m of degree k — 1. Repeated applications
of this argument reduce to the case & = 1. The rigorous description of this
argument follows from a series of lemmas, which we will state but not prove
in full detail. For a complete treatment, see [N] or [V].
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For any function f : R — R, define the forward difference operator Ay by

M) = Fo+d) — fr).
For ¢ > 2, define the (th iterate of the forward difference operator,

Ay

bl

d — Ad/ (0] Ad,,1 =+ 0 Ad1 .

The difference operator reduces degrees of polynomials; for example, if we
take f(x) to be 2*, then

ANgydy (2F) = dy - dyhy_y(2),

where hy_,(x) is a polynomial in x of degree k — / with integer coefficients.
If we let f(x) be an arbitrary polynomial of degree k and

Q
T(f) =Y e(f(x)), (5.4)

then we may use the difference operator to make the estimate,

TP < Q)P 3 N eldi - dihy (), (5.5)

1 ,...,f]] rel
di|<Q

where [ consists of integers in a subinterval of [1, @], and hy_;(x) is a poly-
nomial of degree k& — j. If we assume that the leading coefficient of f(x) is
near a rational number with denominator ¢, then we may bound the sum in
terms of powers of ¢ and (), which gives the following result:

Lemma 5.1 (Weyl’s inequality). Let f(z) = ax® 4 ... be a polynomial in
x of degree k > 2 with real coefficients, and suppose

where ¢ > 1 and (a,q) = 1. Let K = 2" and ¢ > 0, and define T(f) as
in (5.4) above. Then there exists some positive constant C (depending on k
and ¢) such that

T(H<C-Q" (¢ +Q "+ kaqy/f(_

Weyl’s inequality allows us to bound pg(«) at any given « in terms of
n and the denominator of a rational number near o. However, we wish to
bound pi(a) as it is integrated over all & € m. This is accomplished via
Hua’s lemma.
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Lemma 5.2 (Hua’s lemma). For k > 2 and any ¢ > 0, there exists some
positive constant C' (depending on k and ¢) such that

1
/ pe()|* da < €~ P2 he
J0

Proof. The proof proceeds by induction on j for j = 1,..., k. The base case
7 = 11s clear since

/01 T ()] dor = EP: EP:/O‘ (o(m* ")) da = P

m=1 n=1
Now assume the result holds for some 7 < k— 1. By equation (5.5), we have

(o) < @PY 3T S e (ady - dihu ().

1 ,...,f]] rel
|di|<P

where hy_;(2) is a polynomial of degree k — 7 with integer coefficients, and
[ is an interval of consecutive integers contained in [1, P]. It follows that

p(e)” < (2P 3 r(d)e (ad) (5.6)

where r(d) is the number of factorisations of d in the form
d=dy---dih_;(x)

with d; < Pand xz € I.

Similarly, by writing

) 7—1 =1
pe(e)l” = pi(e)® pr(—a)®,

one obtains

pe(e)” = 3 s(d)e (—ad) (5.7)

d

where s(d) is the number of representations of d in the form

7—1 7—1
_ k k
d = E Yi — E T
=1 =1

with 1 < a;,y; < P. Then

S s(d) = Ip(O)F = P?, (5.8)

d
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and by the inductive hypothesis,
1 7 4
5(0) = / lpr(a@)|” da < - P it (5.9)
Jo

for some constant C”’. Tt follows from (5.6) and (5.7) that

/ (@) da < 2Py / Y _r(d)e(ad)y s(d)e(—ad)

d

IA

(2]3)2'7*'74*1 (r(())s(()) + Z r(d)s(d)) i

d£0

One can then show that 7(0) = O(P7) and for d > 0, r(d) = O(P) for any
¢ > 0. Combining these facts with the bounds (5.8) and (5.9) gives

1
/ pu() ™ da
J0

IA

C - P2'7*,7?1 <p.7 p2'77,7‘+f + pr p2'7>

< 90 . pYTI e

for some constant (', and thus the result holds for j 4 1. 0

Weyl’s inequality and Hua’s lemma are the two major ingredients in
bounding the minor arcs term. In addition, we use a result of Dirichlet
that says how closely we may approximate a number by a rational.

Lemma 5.3 (Dirichlet). Let o and Q be real numbers, Q > 1. Then there
exist relatively prime integers a and q such that 1 < g < Q) and

1
qQ

a
o — —

q

<

We now have all the tools necessary to bound the minor arcs term in
equation (5.3).

Proposition 5.4. Let k> 2 and s > 28 + 1. Then there exists € > 0 such
that

/ pr(@)’e(—na)doa =0 (n'%*]*‘) ,

where the implied constant depends only on k and s.
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—€

Proof. We have to save an amount n ' over the trivial estimate n*/*.

Hua’s lemma saves n°', and Weyl’s inequality saves the rest.

By Dirichlet’s theorem (Lemma 5.3) with Q = P* 7, for any real number
o we can find a fraction a/q with 1 < ¢ < P*” and (a,q) = 1 such that

1 < 1 1
qufl/ = min Pkfy ’ q2 :

Sincea €m C (P %1 — P"%), wehave 1 <a <qg—1. If ¢ < P, then
a € M(q,a), which contradicts our assumption that o € m. Thus g > P".
Applying Weyl’s inequality (Lemma 5.1) with f(2) = a2*, we have for any
e >0,

a
o — —

q

IA

()] < C- P (g 4 P4 prrg) N < oy prae

where K = 2% — 1. With this result and Hua’s lemma (Lemma 5.2), we have

aem

/m pela)'e (—na)

1
do < swp o) [ o do
J0O
214

IA

(- prerei) (o o)

s—k+48
S C-P +7

where we have combined the constants into ' and set

14
K

) (2]“—(9)%—6'(5—2]“—{—]).

Since s > 2% we can choose ¢ sufficiently small so that § < 0. Letting

e = —d&/k and using the definition P = (/\ﬂ/k—‘ gives the result. U

5.3 The Major Arcs

To estimate the major arcs term in equation (5.3), we begin by writing the
function pr(a) on the major arcs as the product of two exponential sums plus
a small error term. Bounding these sums and integrating over the major arcs
gives us a bound for the major arcs term in terms of an exponential sum
called the “singular series,” an integral called the “singular integral,” and a
small error term. Further calculations then show that the singular series is
bounded by a constant, and the singular integral is O (n”’/k*]» As in the
previous section, we omit many of the details; for a full treatment, see [N] or

V1.
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We start by introducing the auxiliary functions

o(8) = ZE m+ e (mf),

S(q,a) = d ( )

MQ

Roughly speaking, the function 7)([3) measures the probability that m is a
kth power, and S(¢,a) measures the distribution of the kth powers mod-
ulo ¢g. When «a is contained in the major arc 9MM(q, a), then pp(a) is well
approximated by the product of these two functions. Specifically,

pr(a) = (S(%a)) v (a = ﬁ) +0(P). (5.10)

q

o= (129 o).

then factoring the expression pi(a)® — V(a,q,a)* and applying (5.10) shows
that

If we write

pr(a)" = V(a,g.a) = O (P 1).
Integrating over the major arcs and applying the estimate for p(91) in (5.2)
gives

/ lpi (v (v, q,a )|d(y:()<P5*k*51>

for some 47 > 0. Since the integral over all of 91 is equal to the sum of the
integrals over the individual arcs (g, a), we see that

‘/mpk(a)se(n(y)da—
> 2 / V(a,q,a)’e(—na)da+ O (P,

1<p<PY 0<a<g
(a,9)=1

Further algebraic manipulation leads to the following result:
Lemma 5.5. Let

oo - 3 ¥ () ().

1<g<Q 1<a<yq q
(a.9)=1

J*(n) = / f)(ﬁ)%(—nﬁ)dﬁ.

7Pu7k
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Then

mpk(a)se (—na)da = &(n, PY)J*(n)+ O (PS*kf(ﬁ) .

Lemma 5.5 tells us that estimating the major arcs term comes down to
estimating the sum &(n, P¥) and the integral J*(n). The first step in esti-
mating the integral .J*(n) is to show that expanding the range of integration
introduces only a small error. Let

1/2
J(n) = ‘/1/2 v(B)’e(—nf)ds.

The function J(n) is called the singular integral. One may use the bound

o(B) < Cmin (P1517)
for |3] < 1/2 to show that
) — ()] = O (P (5.11)

for some d; > 0. Then by inducting on s and using a computational lemma
about the Gamma function, one arrives at the following formula:

S

J(n)=T (1 + %) r <E>1 NET o (N (5.12)
for s > 2.

To estimate the sum &(N, PY), we begin by completing the series to
infinity and show that this introduces only a small error. If we let

&(n) =Y _ Aulq),
q=1
where S(q.a) .
S(q,a —na
- 3 (2 ()

1<a<q q q

(a,9)=1
then there is some d5 > 0 such that

16(n) — &(n, P*)| =0 (P ). (5.13)

The series &(n) is called the singular series. We may now apply Weyl’s
inequality (Lemma 5.1) to make the estimate

S(g,a)=0 <q17%+5> 7
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from which we deduce that

Ag)=0(g"™) (5.14)

for some 84 > 0. The singular series &(n) thus converges ahsolutely and uni-
formly with respect to n. We conclude that there is a constant ¢z (depending
only on k and s) such that

|&(n)] < e (5.15)

for all positive integers n.

Bounding the singular series from below is a bit more complicated. The
first step is to show that the function A,(q) is multiplicative; i.e. for ¢ and r
relatively prime, A, (q)A,(r) = A,(¢r). This property allows us to limit our
calculations to the case when ¢ is a power of a prime number. If we define

Xalp) =14 > A, (),

it is possible to show that

. M,
Xn(P) = hm PUTEDE (5.]6)

where M, (q) is the number of solutions to the congruence

rt:f—l—---—l—mfzn (mod q) (5.17)

with the z; integers in [1, q].
The next step is to expand &(n) as an “Euler product,”

&)= [ v (5.18)

p prime

From equation (5.16) we deduce that &(n) is a positive real number, and
from the bound (5.14) it follows that there exists some pg such that

for all n. > 1. Tt therefore suffices to show that y,(p) is positive for all p < pq.
This result follows from equation (5.16) and the fact that when ¢ = p7, there
is always a solution to the congruence (5.17) with the 2; not all divisible by
p. We conclude that there is some ¢; such that

for all positive integers n.

We now have all the tools to bound the major arcs term in equation (5.3).
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Proposition 5.6. For s > 2F 41, there exists some € > 0 such that

1 3

5 1 ) )
/ pk((y)ﬁe (—n(y) do = G(n)r (] + _> r <_> N7 +0 (/\/771*‘) .
Proof. By l.emma 5.5,
/ Pk((y)se (—n(y) do = 6(77/7 P”)J*(n) +0 (Psfkf(ﬁ) .
JIM

By equations (5.13) and (5.11), the first term is equal to
(&(n) + 0 (P~)) (J(n) + O (PF5)) .

By equation (5.12) and the fact that P = (/\ﬂ/]ﬂ, J(n)=0 (P”’*k>. Multi-

plying out the product and combining error terms yields

/931 pr(a)’e(—na)da = &(n)J(n)+ O <P””k*"> 7

where we have used the bound (5.15) to incorporate the product of &(n)
and the error in J(n) into the overall error term. Substituting the formula in
equation (5.12) and once more applying the bound (5.15) gives the result. O

5.4 Conclusions

We now combine all of the above results to prove the Hardy-Littlewood
asymptotic formula for ry ¢(n).

Proof of Theorem 3. From equation (5.1), we have

e = [ o) (-,

By construction of the major arcs M and the minor arcs m, this expression
splits into two integrals,

i) = [ poye(-no)da+ [ puteye(no) do.

By Proposition 5.4,

/ pr(a)’e(—na)da =0 (77/%717”> ,
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and by Proposition 5.6,

S

/mpk(a)se(na) do = &(n)l (1 + %)9 T <?>1 NET 4O (NE)

Combining the error terms and noting that &(n) is bounded above and helow
by constants depending only on k and s gives the result. O

As a parting remark, we note that when & = 2 and s > 5, Theorem 3
gives

ras(n) = d,(n) + hi(n), (5.20)
where ¢’(n) = O (n”’/%w and hl(n) = O (77/”/2*1*‘» This result is a direct

corollary of Theorem 1.

Fach of the two treatments of the problem for sums of squares has its
advantages. The Hardy-Littlewood circle method allows us to derive both
an upper and a lower bound for the function #.(n) in equation (5.20), so
d4(n) is truly an asymptotic approximation to ry ¢(n). With modular forms
we did not derive a lower bound, so Theorem 1 allows for the possibility that
the so-called “error term” hg(n) may dominate for some large values of n.
On the other hand, the circle method gives a considerably worse bound for
the error term h’(n) than the O (n”’“) of Theorem 1. In addition, the circle
method can only provide approximations to ry.(n), and even for the case
k = 2 we cannot use it to derive any formulae analogous to those in Theorem

2.
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