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ations of Modular FormsDavid S FreemanEmmanuel Collegedsf27�
am.a
.uk15 May 20031 Introdu
tionIn the same volume of Diophantus in whi
h he s
ribbled the enigmati
 
om-ment that be
ame known as the Last Theorem, Pierre Fermat also wrote,I have dis
overed a most beautiful theorem...every number is a squareor the sum of two, three or four squares... The theorem is based onthe most diverse and abstruse mysteries of numbers, but I am not ableto in
lude the proof here...1More than a hundred years later, in 1770, Lagrange gave the proof thatFermat omitted, showing that any natural number 
an be expressed as thesum of four squares. Given this result, a natural question to ask is howmany ways a given number 
an be represented by a sum of four squares.This problem was solved by Ja
obi in 1829, who gave a 
on
ise formula forthe number of representations.If we denote by rs(n) the number of representations of n as a sum ofs squares, then Ja
obi's formula gives r4(n). Subsequent mathemati
iansadapted Ja
obi's result to sums of other numbers of squares and by 1907 hadgiven formulae for s = 3 and every even integer through 12. In 1916, Ra-manujan observed that it is possible to 
ompute a very good approximationto rs(n) that holds for all s. The main goal of this essay is to explain andprove this assertion, whi
h takes the form of the following theorem.1Cit. and trans. in [N, p. 3℄ 1



Theorem 1. For any nonnegative integer n and positive integer s, let rs(n)be the number of solutions in the integers to the equationx21 + : : :+ x2s = n:Then for s � 4, rs(n) = Æs(n) + hs(n);where Æs(n) = O �ns=2�1� and hs(n) = O �ns=4�.In parti
ular, Æs(n) is a very good approximation to rs(n) for large n. Forgeneral s the formulae for Æs(n) and hs(n) are hard to work with, but we
an simplify them in a few spe
i�
 
ases. When s is a multiple of 4 we 
an
ompute a simple formula for Æs(n) in terms the divisors of n, and when sis 4 or 8 the term hs(n) is identi
ally zero. Combining these results gives usexpli
it formulae for the number of representations of n as a sum of four oreight squares.Theorem 2. Let rs(n) be de�ned as in Theorem 1. Thenr4(n) = 8>>><>>>: 8Xdjn d for n odd24 Xdjnd oddd for n even,and r8(n) = 16Xdjn (�1)n�dd3:Ja
obi proved the formula for r4(n) using theta fun
tions, whi
h are atype of modular form. The proof of the more general theorem builds onthe same ideas and relies on the theory of modular forms. In Se
tion 2 weshow that the number of ways a number 
an be represented as the sum of ssquares is given by the Fourier 
oeÆ
ients of a 
ertain theta fun
tion, and wedemonstrate that this fun
tion is in fa
t a modular form. In Se
tion 3, we usea type of modular form 
alled Eisenstein series to derive an expli
it formulafor the portion of the theta fun
tion that does not vanish on all 
usps. Afterthis is done what remains of the original theta fun
tion is a 
usp form. InSe
tion 4, we show that the Fourier 
oeÆ
ients of this 
usp form are not toolarge, so that in the limit as n goes to in�nity the 
ontribution of the 
uspform is negligible. We also dis
uss methods of improving the bound on hs(n)2



in Theorem 1, whi
h involves estimating the Fourier 
oeÆ
ients of a type of
usp form 
alled Poin
ar�e series.One might ask whether Theorem 1 generalises to sums of 
ubes and higherpowers. The answer is yes, but the fun
tions involved are not modular forms,and thus a 
ompletely di�erent method of proof is ne
essary. The \
ir
lemethod" devised by Hardy and Littlewood in the early 1920s provides thema
hinery to 
ompute an asymptoti
 formula for sums of higher powers thatis analogous to Theorem 1. In Se
tion 5 we des
ribe how this method givesthe result for sums of kth powers and we show that the more general theoremagrees with Theorem 1 when k = 2. Unfortunately, the Hardy-Littlewoodmethod does not allow us to 
ompute any formulae analogous to those inTheorem 2.2 Theta Fun
tionsOur approa
h to 
ounting representations of sums of squares begins by ex-amining the properties of theta fun
tions. The exposition in this se
tion(loosely) follows that of Sarnak [S2, x1.3℄. Further details, espe
ially withregard to Proposition 2.4, 
an be found in [I, x10℄. Iwanie
 treats a very gen-eral 
lass of theta fun
tions; where ne
essary we have spe
ialised his resultsto the 
ases in whi
h we are interested.We begin by de�ning the n-dimensional analogue of the 
lassi
al thetafun
tion.De�nition. Let H denote the upper half-plane of C . For any positive integern, let �n(z) = Xm2Zn e�ijmj2z (2.1)for any z 2 H .This series 
onverges absolutely for all z 2 H . It is 
lear from the de�ni-tion that �n(2z) has a Fourier series,�n(2z) = 1Xm=�1 ame2�imz: (2.2)Sin
e ea
h ve
tor inZn of length pm 
ontributes 1 to am, the series (2.2) hasthe property the Fourier 
oeÆ
ients am are exa
tly the number of represen-tations of m as the sum of n squares. If we let �n(z) = �n(2z) and show that3



�n(z) is a modular form for a 
ertain 
ongruen
e subgroup of SL2(Z), thenwe 
an use the theory of modular forms to analyse the Fourier 
oeÆ
ientsam.The key property of modular forms is how they transform under thea
tion of subgroups of SL2(Z). For example, a modular form f(z) of weightk (k a positive even integer) for SL2(Z) transforms asf(
z) = (
z + d)kf(z) (2.3)for 
 = ( a b
 d ) 2 SL2(Z). We therefore wish to dis
over transformation prop-erties of the fun
tions �n(z), with the goal of showing that these fun
tionsare modular forms. We �rst observe that�n(z) = �1(z)n: (2.4)This observation allows us to fo
us our attention on the transformation prop-erties of �1(z). The simplest of these properties is 
lear from the de�nition:�1(z + 2) = �1(z): (2.5)Next we use the Poisson summation formula to derive a slightly more
ompli
ated transformation property. The formula is as follows.Result 2.1 (Poisson summation formula; 
f. [I, x1.1℄). Let f : R! Cbe a C1 fun
tion, and let̂f(y) = Z 1�1 f(x)e�2�ixydx:Suppose that for any N � 0, jf(x)j and jf̂(x)j are both less than C � jxj�Nfor some C (depending on N). Then1Xm=�1 f(m) = 1Xm=�1 f̂(m):We will also need the Fourier transform of the Gaussian fun
tion.Lemma 2.2. For x 2 R and �xed 
onstants 
 2 R and � 2 C n f0g, letf(x) = e���(x+
)2 and de�ne f̂(y) as in Result 2.1. Thenf̂ (y) = 1p�e2�i
y��y2=�:4



(Here and throughout this essay, p� denotes the prin
ipal bran
h of thesquare root, with argpz 2 (��=2; �=2℄. For k a half integer, we de�nezk = (pz)2k.)Proof. K�orner [K�o, Lemma 50.2℄ 
omputes1p2� Z 1�1 e�i�te�t2=2dt = e��2=2:Making the 
hanges of variable t = (x + 
)p2��, � = yp2�=� gives theresult.We 
ombine these two results to dedu
e a transformation property of thetheta fun
tion.Proposition 2.3. �1 (�1=z) = p�iz�1(z):Proof. Let � = i=z and 
 = 0 in Lemma 2.2. Then we havef(x) = e�i�x2=zf̂(x) = rzi ei�x2z;and thus by the de�nition of �n (equation (2.1)) and the Poisson summationformula (Result 2.1), we have�1 (�1=z) = 1Xx=�1 f(x) = 1Xx=�1 f̂(x) = p�iz�1(z):In prin
iple, equation (2.5) and Proposition 2.3 allow us to 
ompute thetransformation of �1 under the group �� � SL2(Z) generated by ( 1 20 1 ) and( 0 �11 0 ). However, the 
omputations are bulky, and we desire a more expli
itformula. If we 
onsider the a
tion of the slightly smaller group �(2) � ��,2where �2 = �
 2 SL2(Z) : 
 � �1 00 1� (mod 2)� ;then we may derive the following transformation property:2Gunning [G, x5℄ shows that [SL2(Z) : ��℄ = 3 and [�� : �(2)℄ = 2.5



Proposition 2.4. Let 
 = ( a b
 d ) 2 �(2) (i.e. a � d � 1 (mod 2) andb � 
 � 0 (mod 2)). Then�n(
z) = �2
d �n ��nd (
z + d)n=2 �n(z);where � 
d� is the Ja
obi-Legendre quadrati
 residue symbol for positive odd d(see [W℄) extended to all odd d by� 
d� = 
j
j � 
�d� if 
 6= 0;�0d� = � 1 if d = �10 otherwise;and �q = � 1 if q � 1 (mod 4)i if q � 3 (mod 4) :Proof. To simplify notation, we de�ne e (z) = e2�iz. We start by usingad� b
 = 1 to rewrite 
z as
z = az + b
z + d = �a
 � 1
(
z + d)� :Then we have �1(
z) = 1Xm=�1 e�m22 �a
 � 1
(
z + d)�� : (2.6)Sin
e 
 � 0 (mod 2),e�a(m+ 
x)22
 � = e�am22
 + amx+ a
x22 � = e�am22
 �for any x 2 Z, and thus e(am22
 ) depends only on m modulo 
. We 
antherefore rewrite (2.6) as�1(
z) = Xg (mod 
)0BB�e�ag22
 � Xm2Zm�g (mod 
) e�m22 � �1
(
z + d)��1CCA= Xg (mod 
) e�ag22
 �Xm2Ze�12 �g
 +m�2� �

z + d��! :6



We 
an apply the Poisson summation formula (Result 2.1) to repla
e theterm in the inner sum by its Fourier transform (see Lemma 2.2), whi
h gives�1(
z) = Xg (mod 
) e�ag22
 �Xm2Zr
z + di
 e�m22 �
z + d
 �+ gm
 �! :Splitting m into its 
ongruen
e 
lasses modulo 
, we obtain�1(z) =r
z + di
 Xg (mod 
) Xl (mod 
) e�ag22
 + gl
 + dl22
 �Xm2Ze�12zm2� :Sin
e (
; d) = 1, we 
an substitute l0 = l � dg and still be summing overall 
ongruen
e 
lasses modulo 
. Making this substitution (and applyingad� b
 = 1) gives�1(
z) = r
z + di
 �1(z) Xg (mod 
) Xl0 (mod 
) e�ag22
 + bgl+ 12bdl2�= r
z + di
 �1(z) Xg (mod 
) e�ag22
 � ;sin
e all of the variables are integers and b � 0 (mod 2). Again sin
e(
; d) = 1, we 
an make the substitution g = dx and still be summing overall 
ongruen
e 
lasses modulo 
. Thus the term ag2=2
 be
omes ad2x2=2
 =bdx2=2 + dx2=2
. Sin
e b � 0 (mod 2), we have�1(
z) =r
z + di
 �1(z) Xx (mod 
) e�dx22
 � : (2.7)The sum in this equation is a Gauss sum; to evaluate it, we wish to usethe following formula:Result 2.5 ([I, Lemma 4.8℄). Let p; q be integers with (2p; q) = 1 andq � 0. Then Xt (mod q) e�pt2q � = �pq� �qpq;where (pq ) and �q are de�ned as in Proposition 2.4.The sum in equation (2.7) does not satisfy the hypotheses of the Result2.5, so we must manipulate the expression a bit. The key observation at7



this stage is that we now have two ways of using equation (2.7) to evaluatethe expression �1(
(�1=z)), namely, substituting �1=z for z and applyingProposition 2.3, and substituting 
 0 = 
 ( 0 �11 0 ) = � b �ad �
 � for 
. Making thesesubstitutions gives the following identity:rdz � 
id �1(z)g(�
; d) = r�
=z + di
 �1(�1=z)g(d; 
)= r
� dz
 �1(z)g(d; 
);where g(p; q) = Xx (mod q) e�px22q � :It follows that g(d; 
) =ri
d g(
; d):By assumption, d is an odd integer, so we may substitute 2x for x in theexpression for g on the right hand side, whi
h givesg(d; 
) =ri
d Xx (mod d) e��2x
t2d � : (2.8)The right hand side of equation (2.8) satis�es the hypotheses of Lemma 2.5,so we 
on
lude that g(d; 
) = pi
�2
d � �d:Substituting this expression into equation (2.7) gives�1(
z) = p
z + d�2
d � ��1d :Taking the nth power of both sides proves the proposition (
f. equation (2.4)).As we observed above, the fun
tion whose Fourier 
oeÆ
ients 
ount repre-sentations as sums of squares is not �n(z) but rather �n(z), whi
h we de�nedto be equal to �n(2z). We may dedu
e the transformation property of �n(z)from Proposition 2.4.Corollary 2.6. Let 
 = ( a b
 d ) 2 �0(4) (i.e. 
 � 0 (mod 4)). Then�n(
z) = � 
d�n ��nd (
z + d)n=2�n(z): (2.9)8



Proof. By de�nition of �n(z),�n(
z) = �n(2
z) = �n� a(2z) + 2b(
=2)(2z) + d� = �n (
 0(2z)) ;where 
 0 = � a 2b
=2 d �. Sin
e 4j
, 
 0 2 �(2), and we may apply Proposition 2.4to dedu
e the result.Note that for n divisible by 4, Corollary 2.6 gives�n(
z) = (
z + d)n=2�n(z);whi
h is the familiar transformation property for modular forms of evenweight (
f. equation (2.3)).A fun
tion that satis�es the transformation property given in equation(2.9) for a subgroup � � �0(4) is said to be a modular fun
tion of weight n=2for �. However, this transformation property is not enough to make �n(z) amodular form; we also need to examine the fun
tion's behaviour at the 
uspsof �0(4).A modular form of even weight for SL2(Z) is said to be holomorphi
 at 1if it has a Fourier expansion P ane2�inz and an = 0 for all n < 0. In a moregeneral 
ongruen
e subgroup � � SL2(Z) there may be multiple 
usps, ea
h
orresponding to an equivalen
e 
lass of s 2 Q [ f1g under the a
tion of �.To de�ne holomorphi
ity at a 
usp other than in�nity, we make a 
hange ofvariables that moves the 
usp to in�nity and divide out by the automorphyfa
tor.De�nition. Let � � SL2(Z), and let f : H ! C be a modular fun
tion ofweight k for �. Given s 2 Q [ f1g, 
hoose Æ = ( a b
 d ) 2 SL2(Q) su
h thats = Æ(1). Let w = Æ�1z be the lo
al variable at s and de�ne f j[Æ℄k : H ! C(read \f hit by delta") byf j[Æ℄k (w) = f(Æw)(
w + d)�k:We say f is holomorphi
 at the 
usp s if there is some positive integer Msu
h that f j[Æ℄k (w) = 1Xn=�1 ane2�inw=M ;and an = 0 for all n < 0. The 
oeÆ
ient a0 = f j[Æ℄k (1) is the value of fat the 
usp s. 9



In general, the 
oeÆ
ients in the Fourier expansion, and therefore thevalues at the 
usps, will depend on the 
hoi
e of lo
al variable w. A
tions ofsu

essive 
hanges of variable behave ni
ely (see for example [K, PropositionIII.16℄), but we will not need su
h results. Our aim now is to show that thefun
tion �n(z) is holomorphi
 at the 
usps of �0(4). To do so we need to�nd out what these 
usps are; it turns out that there are three equivalen
e
lasses.Lemma 2.7. Let s 2 Q. Write s = p=q, where (p; q) = 1. Then s is�0(4)-equivalent to one of the following:1. 1, if 4jq;2. 0, if q is odd; or3. 1=2, if q � 2 (mod 4).Moreover, no two of 1, 0, and 1=2 are �0(4)-equivalent.Proof. Sin
e (p; q) = 1, we may 
hoose integers a; b su
h that ap+ bq = 1.1. Suppose 4jq. Let 
 = � a b�q p �. Then 
 2 �0(4) and 
 (p=q) =1.2. Suppose q is odd. By repla
ing a with a+kq and b with b�kp (for somek) if ne
essary, we may assume that a � 0 (mod 4). Let 
 = � q �pa b �.Then 
 2 �0(4) and 
 (p=q) = 0.3. Suppose q � 2 (mod 4). Then a is odd. By repla
ing a with a + qand b with b � p if ne
essary, we may assume a � 1 (mod 4). Let
 = � a b2a�q p+2b �. Then 
 2 �0(4) and 
 (p=q) = 1=2.It remains to show that 1, 0, and 1=2 are all inequivalent. Any matrix
 2 SL2(Z) that takes p=q to1 must be of the form 
 = � a b�q p �, so if 4 doesnot divide q then 
 62 �0(4); thus 0 (= 0=1) and 1=2 are not equivalent to1. Similarly, any 
 2 SL2(Z) that takes p=q to 0 is of the form 
 = � q �pa b �,so if q is even then a must be odd and thus 
 62 �0(4). We 
on
lude that 1=2is not equivalent to 0.We 
an now show that �n(z) is holomorphi
 at all three 
usps, and in fa
t
al
ulate its value at ea
h. We will use these values in Se
tion 3 to expresstheta series in terms of Eisenstein series.10



Proposition 2.8. For any positive integer n, �n(z) is holomorphi
 at all
usps of �0(4). Furthermore, the values at the 
usps are1. �n(1) = 1,2. �n ����h� 0 � 122 0 �in=2 (1) = i�n=2, and3. �n ���[( 1 02 1 )℄n=2 (1) = 0.Proof. By Lemma 2.7, it suÆ
es to show that �n(z) is holomorphi
 at 1,0, and 1=2, and by equation (2.4) we need only 
onsider �1(z). It is 
learfrom the de�nition that �1(z) is holomorphi
 at 1, sin
e�1(z) = 1Xm=�1 e2�im2z = 1 + 2 1Xm=1 e2�im2z:The 
onstant term is 1, so �1(1) = �n(1) = 1:Let Æ = � 0 � 122 0 �, and note that Æ(1) = 0. Then in the lo
al variable atzero, �1 ���[Æ℄1=2 (w) = (2w)�1=2�1�� 14w�= (2w)�1=2�1�� 12w� :Applying Proposition 2.3 gives�1 ���[Æ℄1=2 (w) = p�i�1(2w) = p�i�1(w):Applying the de�nition as we did above at in�nity, we see that �1 is holo-morphi
 at zero and �1 ���[Æ℄1=2 (1) = i�1=2:Taking the nth power gives�n ���[Æ℄n=2 (1) = i�n=2:To evaluate �n(z) at the 
usp 1=2 we will need the following lemma.11



Lemma 2.9. �1(z � 1) = 2�1(4z)� �1(z).Proof. From the de�nition,�1(z � 1) = 1Xm=�1 e�im2ze��im2= Xm even e�im2z � Xm odd e�im2z= 2 Xm even e�im2z � 1Xm=�1 e�im2z= 2 �1(4z)� �1(z):Now let Æ = ( 1 02 1 ), and note that Æ(1) = 12 . Then�1 ���[Æ℄1=2 (w) = (2w + 1)�1=2�1� w2w + 1�= (2w + 1)�1=2�1� 2w2w + 1� :Applying Proposition 2.3, Lemma 2.9, and Proposition 2.3 again gives�1 ���[Æ℄1=2 (w) = (2w + 1)�1=2s�i��1� 12w� �1��1� 12w�= r i2w �2 �1�� 2w�� �1�� 12w��= r i2w  2r�iw2 �1 �w2 ��p�2iw �1 (2w)!= �1(w=4) ��1(w): (2.10)From this last expression we see that �1(z) is holomorphi
 at 1=2. Theleading 
oeÆ
ients 
an
el, giving�1 ���[Æ℄1=2 (1) = �n ���[Æ℄n=2 (1) = 0:We have now shown that �n(z) is a modular form of weight n=2 for �0(4)a

ording to the following de�nition:12



De�nition. Let n be a positive integer, and let 
 = ( a b
 d ) 2 �0(4) (i.e.ad� b
 = 1 and 4j
). De�ne the automorphy fa
tor j(
; z) byj(
; z) = � 
d� ��1d p
z + d; (2.11)where � 
d� and �d are de�ned as in Proposition 2.4. Let k be half a positiveinteger. Then a modular form f(z) of weight k for �0(4) is a holomorphi
fun
tion f : H ! C satisfying1. f(
z) = j(
; z)2kf(z) for any 
 2 �0(4),2. f(z) is holomorphi
 at ea
h 
usp of �0(4).If f is a modular form that vanishes at all 
usps of �0(4), then f is a a 
uspform.Sin
e � 
d� �d is a fourth root of unity, when k is an even integer this def-inition agrees with the usual de�nition of modular forms of even weight fora 
ongruen
e subgroup � � SL2(Z). This de�nition in the same form 
anbe used to de�ne modular forms for half-integer weight for any subgroup� � �0(4) of �nite index. For half-integer weight forms for a general dis-
rete subgroup � � SL2(R), the fa
tor � 
d� �d is repla
ed by a more general\multiplier system"; for details, see [I℄.It is 
lear from the de�nition that the spa
e of modular forms of weightk for �0(4) is a ve
tor spa
e over C . In fa
t, this spa
e is �nite dimensional.Proposition 2.10. Let Mk(�0(4)) denote the spa
e of modular forms ofweight k for �0(4). Then dim(Mk(�0(4))) <1.Proof. We �rst observe that given k and l, for f 2 Mk(�0(4)) and g 2Ml(�0(4)), fg 2 Mk+l(�0(4)). Choose some nonzero f0 2 Mk(�0(4)). Thenthe map f 7! (f0)23f is an inje
tion fromMk(�0(4)) intoM24k(�0(4)). Sin
ek is a half integer it therefore suÆ
es to show the result for 12jk.Let q = e2�iz, and de�ne�(q) = q 1Yn=1(1� qn)24:It is well known (see e.g. [S2, Appendix 1.1℄) that � is a modular formof weight 12 for SL2(Z), and thus also for any 
ongruen
e subgroup � �13



SL2(Z). It is 
lear from the de�nition that � vanishes at 1, and thus � isa 
usp form for any � � SL2(Z). In addition, � is nonzero everywhere onH . Suppose 12jk, and let f be a modular form of weight k for �0(4). For ea
h
usp s of �0(4), 
hoose Æ 2 SL2(Q) su
h that Æs = 1, and let the Fourierexpansion of f at the 
usp s bef j[Æ℄k (w) = an(s)e2�inw:Suppose that for ea
h s, an(s) = 0 for all n < hsk=12, where hs is the orderof the zero of � at the 
usp s. Then the fun
tion f ���k=12 is holomorphi
on H and at all 
usps, and thereforef ���k=12 2 M0(�0(4)) = C ;so f = 
 � �k=12 for some 
 2 C . Let N = Ps hs and de�ne a linear map : Mk(�0(4)) ! C N that sends a modular form f to the ve
tor 
onsistingof its �rst hsk=12 Fourier 
oeÆ
ients at ea
h 
usp. Then ker( ) = C ��k=12,and we 
on
lude thatdim(Mk(�0(4))) � 1 + k12Xs hs (2.12)< 1:For even k � 2, one 
an use the Riemann-Ro
h Theorem (see [Mi, The-orem 4.9℄) to 
al
ulate an expli
it formula for the dimension of the spa
e ofmodular forms of weight k. We will need this result to prove the expli
itformulae in Theorem 2. (In the spe
i�
 
ases we 
onsider the dimension 
anbe 
omputed by more elementary means; see Proposition 3.10 below.) Toprove the order of magnitude estimates in Theorem 1, all we need is that thespa
e of modular forms is �nite dimensional.3 Eisenstein SeriesAn important example of modular forms of half-integer weight is the set ofEisenstein series. Eisenstein series are always non-
uspidal modular forms(i.e. the 
onstant term in the Fourier expansion is nonzero), and it turns outthat they span the spa
e of non-
uspidal modular forms. This is useful for14



our appli
ation to representations of integers as sums of squares be
ause (aswe will see in Se
tion 4 below) the Fourier 
oeÆ
ients of 
usp forms are ofstri
tly smaller order than those for Eisenstein series, and thus the Fourier
oeÆ
ients of the theta fun
tion are dominated by those for the Eisensteinseries.In this se
tion we de�ne the Eisenstein series for �0(4), show they aremodular forms with appropriate behaviour at ea
h 
usp of �0(4), and 
al
u-late their Fourier 
oeÆ
ients. The formulae simplify ni
ely for the series ofeven integer weight, while for the other series we 
an dedu
e only an order ofmagnitude estimate. Our exposition of the Eisenstein series and demonstra-tion of their properties follows that of Sarnak [S2, x1.4℄, while the 
al
ulationof the Fourier 
oeÆ
ients follows Koblitz [K, xIII.3 and IV.2℄.We begin by re
alling the standard de�nition of Eisenstein series for eveninteger weight k: Ek(z) = 12�(k) Xm;n2Z(m;n)6=(0;0) 1(mz + n)k ;where �(k) is the Riemann zeta fun
tion. We may rewrite this sum (see [K,xIII.2℄) as Ek(z) = Xm�0(m;n)=1 1(mz + n)k ;and note that this is a sum of j(
; z)�2k over matri
es 
 of the form ( � �m n ). Weinterpret this set of matri
es as 
oset representatives of �1nSL2(Z), where�1 = �� 1 j0 1 � ; j 2Z	 is the stabiliser of 1 in SL2(Z). We are now preparedto generalise the de�nition.De�nition. Let k > 2 be a half integer, and s 2 Q [ f1g. Choose Æ 2SL2(Q) su
h that Æs = 1. The Eisenstein series of weight k at the 
usp sfor �0(4) is E(s)k (Æz) = X
2�1n�0(4) j(
; Æz)�2k;where the automorphy fa
tor j is de�ned by equation (2.11).If we 
hoose 
oset representatives for �1n�0(4) of the form ( � �
 d ) with4j
 and keep only one of ea
h pair f(
; d); (�
;�d)g, then we may write the15



series at in�nity asE(1)k (z) = X4j
; d>0(
;d)=1 � 
d��2k �2kd (
z + d)�k : (3.1)The series E(1)k 
onverges absolutely for k > 2 sin
e���E(1)k (z)��� � X4j
; d>0(
;d)=1 j
z + dj�k � X
;d2Z(
;d)6=(0;0) j
z + dj�k ;and the last sum 
onverges absolutely for k > 2. By the same reasoning, E(s)k
onverges absolutely for k > 2 and any s 2 Q.It is straightforward to 
he
k that the Eisenstein series satisfy the trans-formation property of modular forms. We require a simple lemma.Lemma 3.1. The automorphy fa
tor j(
; z) satis�esj(��; z) = j(�; �z) � j(�; z)for any �; � 2 �0(4).Proof. For any fun
tion f we havef(��z)f(z) = f(��z)f(�z) � f(�z)f(z)Using �1(z) as our fun
tion f and applying the transformation property inCorollary 2.6 gives the result.We use this lemma to show that ea
h Eisenstein series transforms like amodular form.Proposition 3.2. Let k be a half integer greater than 2, let s 2 Q [ f1g,and 
hoose Æ 2 SL2(Z) su
h that Æs =1. Then for any � 2 �0(4),E(s)k (�Æz) = j(�; Æz)2kE(s)k (Æz):Proof. By the de�nition,E(s)k (�Æz) = X
2�1n�0(4) j(
; �Æz)�2k;16



and by Lemma 3.1,E(s)k (�Æz) = X
2�1n�0(4)� j(�; Æz)j(
�; Æz)�2k :However, right multipli
ation by � just permutes the 
osets of �1n�0(4),whi
h does not 
hange the value of the sum sin
e we have absolute 
onver-gen
e. We may therefore rewrite the sum asE(s)k (�Æz) = j(�; Æz)2k X
2�1n�0(4) (j(
; Æz))�2k ;giving the result.The above result shows that for a given 
hoi
e of lo
al variable w = Æz,the Eisenstein series at two equivalent 
usps s; s0 are identi
al, so we 
anrefer to \the Eisenstein series at s," meaning the series at all 
usps that are�0(4)-equivalent to s. We now investigate the behaviour at the 
usps of theEisenstein series, whi
h will allow us to rewrite the theta fun
tion in termsof Eisenstein series and 
usp forms.Proposition 3.3. Let w = Æz be a lo
al variable at a 
usp s of �0(4), andlet E(s)k (w) be the Eisenstein series of weight k (k > 2 a half integer) at s.Then E(s)k (1) = 1, and E(s)k (s0) = 0 for any 
usp s0 not �0(4)-equivalent tos.Proof. We 
arry out the 
al
ulations for the series at in�nity; those for theother series are identi
al.The only term in the sum de�ning the Eisenstein series that does not goto zero as z goes to in�nity is that 
orresponding to the identity in �1n�0(4),or (
; d) = (0; 1) in the notation of equation (3.1). Splitting this term out ofthe sum gives E(1)k (z) = 1 + X
>0;4j
(
;d)=1� 
d��2k �2kd (
z + d)�k :Taking absolute values and adding terms where we have omitted values of 
and d gives ���E(1)k (z)� 1��� � 2 1X
=1 1Xd=1 j
z + dj�k :17



Let z = iy for y 2 R; y > 0. By 
omparison with a double integral in thevariables 
 and d, we see that for k > 2 there is some 
onstant C > 0 su
hthat ���E(1)k (iy)� 1��� � Cyk�2 :As y goes to in�nity the right hand side goes to zero, so E(1)k (1) = 1.For the 
usp at zero, we use Æ = ( 0 �11 0 ) to 
hange to the lo
al variablew = �1=z: E(1)k j[Æ℄k (w) = w�kE(1)k (�1=w)= X4j
; d>0(
;d)=1 � 
d��2k �2kd (dw + 
)�k :Sin
e d is odd, all the terms go to zero as w goes to in�nity. We thus have���E(1)k j[Æ℄k (w)��� � 2 1X
=0 1Xd=1 jdw + 
j�k ;and sin
e k > 2, as w goes to in�nity this sum goes to zero by the samereasoning as above.Finally, using Æ = ( 1 02 1 ) to 
hange to the lo
al variable at 12 givesE(1)k j[Æ℄k (w) = (2w + 1)�kE(1)k � w2w + 1�= X4j
; d>0(
;d)=1 � 
d��2k �2kd ((
+ 2d)w + d)�k :Sin
e (
; d) = 1, all terms go to zero as w goes to in�nity, and thus the sumgoes to zero by the same reasoning as in the previous two 
ases.Taken together, Propositions 3.2 and 3.3 imply that the Eisenstein seriesare modular forms. Furthermore, sin
e ea
h series is nonzero at a di�erent
usp, we 
an write any modular form as a linear 
ombination of Eisensteinseries plus a form that vanishes at all 
usps. We now 
arry out this 
al
ulationfor �n(z). To simplify notation, we will assume that the Eisenstein series atzero is de�ned in the variable w = �1=4z, and we will denote by E(0)k (z) thefun
tion E(0)k ���h� 0 � 122 0 �ik (z). 18



Corollary 3.4. For any positive integer n > 4,�n(z) = E(1)n=2 (z) + i�n=2E(0)n=2(z) + Fn=2(z);where Fn=2(z) is a 
usp form of weight n=2 for �0(4).Proof. By Propositions 2.8 and 3.3, the fun
tionFn=2(z) = �n(z)� E(1)n=2 (z)� i�n=2E(0)n=2(z)vanishes on all three 
usps of �0(4). By linearity of modular forms, Fn=2(z)is a modular form of weight n=2, and thus a 
usp form.We now wish to 
al
ulate the Fourier 
oeÆ
ients of the non-
uspidalpart of �n(z). In general, the Legendre symbol and �d in the de�nition ofthe Eisenstein series makes it impossible to 
ompute a simple expression;however, we 
an make an order-of-magnitude estimate. We 
ompute the
oeÆ
ients for ea
h of the two Eisenstein series separately.Proposition 3.5. Let E(1)k (z) and E(0)k (z) be the Eisenstein series of weightk > 2 at 1 and 0, respe
tively, for �0(4). ThenE(1)k (z) = 1 + 1Xl=1 ale2�ilz;E(0)k (z) = 1Xl=1 ble2�ilz;where al = (�2�i)k(k � 1)! lk�1Xn>04jn n�k X0�j<n(j;n)=1�nj ��2k �2kj e2�ilj=n; (3.2)bl = (��i)k(k � 1)! lk�1 Xn>0 oddn�k�2kn X0�j<n(j;n)=1� jn��2k e�2�ilj=n: (3.3)Proof. From the de�nition of the Eisenstein series (
hoosing the pair off(
; d); (�
;�d)g with 
 > 0), we haveE(1)k (z) = 1 + X4j
; 
>0(
;d)=1 � 
d��2k �2kd (
z + d)�k : (3.4)19



Sin
e the sum is absolutely 
onvergent for k > 2, we may group terms for agiven 
 by the value of d modulo 
:E(1)k (z) = 1 +X
>04j
 X0�j<
(j;
)=1 1Xh=�1� 
j + 
h��2k �2kj+
h(
z + j + 
h)�k:We now observe that sin
e 
 is divisible by 4, �j+
h and � 
j+
h� are indepen-dent of h. (For the latter we appeal to the multipli
ative and re
ipro
ityproperties of the Ja
obi symbol, whi
h 
an be found in [W℄.) We now haveE(1)k (z) = 1 +X
>04j
 
�k X0�j<
(j;
)=1�
j��2k �2kj 1Xh=�1�z + j
 + h��k :To evaluate the innermost sum, we use to a formula that 
an be derived fromthe series expansion of the 
otangent:Result 3.6 ([I, eq. (1.46)℄). For z 2 H and k � 2 an integer,1Xa=�1(z + a)�k = (�2�i)k(k � 1)! 1Xl=1 lk�1e2�ilz:Applying this result to expression for E(1)k (z) givesE(1)k (z) = 1 +X
>04j
 
�k X0�j<
(j;
)=1�
j��2k �2kj (�2�i)k(k � 1)! 1Xl=1 lk�1e2�ilze2�ilj=
:Bringing the 
onstant and the fa
tor lk�1e2�ilz to the outside and repla
ing
 with n gives the result.To begin the analogous 
omputation for the Eisenstein series at zero,re
all that we de�ned the series in the variable w = �1=4z:E(0)k (w) = X4j
;d>0(
;d)=1� 
d��2k �2kd (
w + d)�k:Hitting with Æ = � 0 � 122 0 � to 
hange ba
k to the variable z (i.e. the lo
al20



variable at in�nity) givesE(0)k (z) = (2z)�k X4j
;d>0(
;d)=1� 
d��2k �2kd �� 
4z + d��k= 2�k X4j
;d>0(
;d)=1� 
d��2k �2kd �dz � 
4��k :We now let 
 = 4m and note that (4m;d) = 1 if and only if d is odd and(m;d) = 1. Furthermore, sin
e �4d� = 1 for all d, � 
d� = �md �. We thus haveE(0)k (z) = 2�k Xd>0 odd(m;d)=1 �md ��2k �2kd (dz �m)�k : (3.5)As above, we group terms, this time for ea
h d grouping by the value of mmodulo d,E(0)k (z) = 2�k Xd>0 odd �2kd X0�j<d(j;d)=1 1Xh=�1�j + dhd ��2k �2kd (dz � j + dh)�k= 2�k Xd>0 oddd�k�2kd X0�j<d(j;d)=1�jd��2k 1Xh=�1�z � jd + h��k :Applying Result 3.6 givesE(0)k (z) = 2�k Xd>0 odd d�k�2kd X0�j<d(j;d)=1�jd��2k (�2�i)k(k � 1)! 1Xl=1 lk�1e2�ilze�2�ilj=d:Bringing the 
onstant and the fa
tor lk�1e2�ilz to the outside and repla
ingd with n gives the result.We now wish to bound the growth of the Fourier 
oeÆ
ients that we havejust 
al
ulated, so that we may get an order of magnitude estimate for �n(z).This task is a straightforward 
orollary of the above result.Corollary 3.7. Let al and bl be de�ned as in Proposition 3.5 above. Thenfor k > 2 there exist positive real numbers Ca, Cb su
h that for any l > 0,jalj � Calk�1jblj � Cblk�121



Proof. The innermost sum in the expression for al in (3.2) has absolutevalue less than n, sin
e ea
h term has absolute value 1 and there are fewerthan n terms. Thus jalj � (2�)k(k � 1)! lk�1 1Xn=1 n1�k:The sum 
onverges for k > 2, giving the result. The proof for bl is analogous.The formulae in Proposition 3.5 are in general the most expli
it we 
an
al
ulate for al and bl. However, when k is an even integer, the Legendresymbols and �d all drop out, so we 
an simplify the result further.Proposition 3.8. Let al and bl be de�ned as in Proposition 3.5. Then fork > 2 an even integer,al = �2k(2k � 1)Bk Xdjll=d even(�1)ddk�1bl = �2k(2k � 1)Bk Xdjll=d odddk�1where Bk are the Bernoulli numbers, de�ned as the 
oeÆ
ients in the powerseries xex � 1 = 1Xk=0 Bk xkk! : (3.6)Proof. For the 
oeÆ
ients al, we begin with equation (3.4). We note thatsin
e k is an even integer, �md ��2k = �2kd = 1. Evaluating at z=2 and letting
0 = 
=2 gives E(1)k �z2� = 1 + X
0>0 even(
0 ;d)=1 (
0z + d)�k:We wish to sum over all pairs (
0; d) with 
0 even, not just over relativelyprime pairs, so we multiply and divide by the sum over all odd j of j�k:E(1)k �z2� = 1 + Xj>0 odd j�k!�1 Xj>0 odd X
0>0 even 1Xd=�1(
0;d)=1 (j
0z + jd)�k= 1 + 2�k�(k) � 2�k�(k) Xn>0 even 1Xm=�1�nz � 12 +m��k ; (3.7)22



where in the last sum we have let m = (jd+1)=2 and n = j
0. We now applyResult 3.6 to dedu
eE(1)k �z2� = 1 +� 1�(k)(2k � 1)�� (2�i)k(k � 1)!� Xn>0 even 1Xd=1 dk�1e�indze��id:To rewrite the 
onstant in front of the sum, we use the fa
t (see [I, eq. (1.42)℄)that for k � 2 an even integer,Bk = � 2k!(2�i)k �(k); (3.8)where Bk are the Bernoulli numbers. From this formula we dedu
e that� 1�(k)(2k � 1)�� (2�i)k(k � 1)!� = �2k(2k � 1)Bk :Repla
ing z=2 with z and letting l = nd gives the result.For the 
oeÆ
ients bl, we begin with equation (3.5) and again note thatsin
e k is an even integer, �md ��2k = �2kd = 1. This time, we wish to sum overall pairs (m;d) with d odd. We again multiply and divide by the sum overall odd j of j�k:E(0)k (z) = 2�k  Xj>0 odd j�k!�1 Xj>0 odd Xd>0 odd 1Xm=�1(m;d)=1 (jdz � jm)�k= 2�k�(k) � 2�k�(k) Xn>0 odd 1Xm0=�1 (nz �m0)�k ; (3.9)where in the last sum we have let n = jd and m0 = jm. We now apply Result3.6 to dedu
eE(0)k (z) = � 1�(k)(2k � 1)�� (2�i)k(k � 1)!� Xn>0 odd 1Xd=1 dk�1e2�indz:Applying equation (3.8) shows that the 
onstant is equal to �2k(2k�1)Bk . Lettingl = nd gives the result.The above results on Eisenstein series are valid for any half-integer weightk > 2. For k = 2 the series 
onverge only 
onditionally, so some extra 
om-pli
ations arise. There are two ways to approa
h the 
onvergen
e problems.23



The �rst (see [K, xIII.2℄) is to de�ne the Eisenstein series of weight 2 in theusual manner, in whi
h 
ase the sums 
onverge 
onditionally but do not sat-isfy the right transformation rule. For the series at the 
usp s in the lo
alvariable w, we haveE(s)2 (
w) = (
w + d)2E(s)2 (w) + �s(w);where �s is the \error term." It turns out that the error term is simple enoughso that given any two Eisenstein series, there is some linear 
ombination forwhi
h the error terms 
an
el, and thus this linear 
ombination is a (non-
uspidal) modular form of weight 2 for �0(4).The other way to deal with Eisenstein series of weight 2 (see [S2, Remark1.4.4℄) is to introdu
e the fun
tionE(s)2 (w; t) = X
2�1n�0(4)(
w + d)�2 j
w + dj�2tand take the limit as t goes to zero. This limit exists and transforms 
or-re
tly but is not quite holomorphi
. However, the non-holomorphi
 part isa single term in the Fourier expansion, so we may take any linear 
ombi-nation that annihilates the non-holomorphi
 part, whi
h leaves (as above) atwo-dimensional spa
e of modular forms of weight 2 that are not 
usp forms.To extend Corollary 3.4 to the 
ase n = 4, we require the fun
tionE(1)2 (z)� E(0)2 (z) to be a modular form of weight 2 for �0(4). Fortunately,this is the 
ase.Proposition 3.9. Let E�2(z) = E(1)2 (z)� E(0)2 (z):Then E�2(z) is a modular form of weight 2 for �0(4).Proof. From equations (3.7) and (3.9), we haveE�2(z) = 1 + 2�2 1Xn=1 1Xm=�1 1�2nz � 12 +m�2 � 1((2n � 1)z +m)2! (3.10)= 1 + 2�2 1Xn=1 1Xm=�1 (1� 4n)z2 + (2n � 2m)z + (m� 14)�2nz � 12 +m�2 ((2n + 1)z +m)2 :Taking absolute values term by term gives��E�2(z)�� � 1Xn=1 1Xm=�1 A jmj+Bn+ C�4n2 jzj2 + 4mnRe(z) +m2�2 ;24



for some positive 
onstants A, B, C (depending on z). (Note that we haveabsorbed the non-quadrati
 terms in the denominator into the 
onstants.)It is 
lear from equation (3.10) that E�2(z + 1) = E�2(z), so we may assumewithout loss of generality that jRe(z)j � 1=2. Applying this fa
t gives��E�2(z)�� � 2max �jzj2 ; jzj�2� 1Xn=1 1Xm=0 Am+Bn+ C(4n2 � 2mn+m2)2 :If we make the substitution u = n, v = m� n, then��E�2(z)�� � 1Xu=1 1Xv=�1 A0u+B 0 jvj+ C 0(3u2 + v2)2� 2 1Xu=1 1Xv=0 A0u+B 0v + C 0(u2 + v2)2 :If we absorb the 
onstant C 0 into the other two 
onstants and use the fa
tthat sin
e A0, B 0, u, v are all nonnegative,A0u+B 0vpu2 + v2 � min (A0; B 0) ;then we have ��E�2(z)�� � 1Xu=1 1Xv=0 D(u2 + v2)3=2for some positive 
onstant D. This last sum 
onverges by 
omparison withthe integral Z ZR dx dy(x2 + y2)3=2 = � Z 1� drr2 ;where R is the half-plane y > 0 minus a dis
 around the origin of radius �.Sin
e the sum (3.10) 
onverges absolutely for all z, E�2(z) is holomorphi
on H , and 
he
king holomorphi
ity at the 
usps is straightforward. To showthe transformation property, we use the de�nition of Eisenstein series to writeE�2(z) = X
2�1n�0(4) j(
; z)�4 � z�2j �
;�1z��4 :Sin
e the sum is absolutely 
onvergent, we may apply the same reasoningas in the proof of Proposition 3.2 to dedu
e that for � = ( a b
 d ) 2 �0(4),E�2(�z) = (
z + d)2E�2(z). 25



Now that we have absolute 
onvergen
e in the Eisenstein series of weight2, we may extend the formulae in Propositions 3.5 and 3.8 to the 
ase k = 2.The 
al
ulations are for the most part identi
al, and we omit the details; fora full treatment see [Mu, xI.15℄.In general the 
usp form Fn=2(z) in Corollary 3.4 is nontrivial; however,it vanishes for 
ertain small values of n, and the theta series is exa
tly equalto the sum of the two Eisenstein series.Proposition 3.10. For n = 4 or 8, the 
usp form Fn=2(z) de�ned in Corol-lary 3.4 is identi
ally equal to zero.We give two di�erent proofs. The �rst is 
omputational, and the se
onduses some more powerful results about Riemann surfa
es to des
ribe theresult in terms of dimensions of ve
tor spa
es.Proof No. 1. The �rst proof requires a result about the number of zeroesof a modular fun
tion f for �0(4), whi
h may be proved by integrating thelogarithmi
 derivative of f around the boundary of a fundamental domainfor �0(4). (Milne [Mi, Prop. 4.12℄ uses the Riemann-Ro
h Theorem to provethe result in greater generality, but we do not need this stronger version.)Result 3.11 ([K, xIII.3, Problem 17℄). Let f(z) be a nonzero modularfun
tion of weight k (k � 0 an even integer) for �0(4). Let F be a funda-mental domain for �0(4), in
luding the three 
usps, and for p 2 F denote byvp(f) the order of the zero or pole of f(z) at the point p. ThenXp2F vp(f) = k2 :Sin
e �4(z) is a modular form (of weight 2), it has no poles in any fun-damental domain F . Furthermore, we have from equation (2.10),�4 j[Æ℄2 (w) = a1e2�iw + higher powers of e2�iw;where Æ = ( 1 02 1 ). Thus �4(z) has a zero of order 1 at the 
usp 1=2, and byResult 3.11 it has no other zeroes. It follows that �8(z) = �4(z)2 has a zeroof order 2 at the 
usp 1=2 and no other zeroes or poles.Proposition 3.8 (extended to weight 2 via Proposition 3.9) gives an expli
itformula for the Fourier 
oeÆ
ients of the modular form E(1)n=2 (z)+in=2E(0)n=2(z)for n = 4 or 8. One 
an easily 
ompute that the �rst four 
oeÆ
ients am do26



in fa
t give the number of representations of m as the sum of four or eightsquares. Thus in both 
ases the fun
tion�n(z)�E(1)n=2 (z)� in=2E(0)n=2(z)has a zero of order four at 1. Sin
e �n(z) has at zero of order n=4 at 1=2and no other zeroes, the fun
tion (z) = 1 � E(1)n=2 (z)� in=2E(0)n=2(z)�n(z)has a zero of order four at 1, a pole of order n=4 at 1=2, and no other poles.Sin
e  (z) is a modular fun
tion of weight zero and has fewer poles thanzeroes, by Result 3.11 it is identi
ally equal to zero. We 
on
lude that�n(z) = E(1)n=2 (z) + in=2E(0)n=2(z);and the 
usp form Fn=2(z) is identi
ally equal to zero.Proof No. 2. Milne [Mi℄ uses the Riemann-Ro
h Theorem and the 
orre-sponden
e between modular forms of weight k and k=2-fold di�erential formsto derive the following dimension formula:Result 3.12 ([Mi, Theorem 4.9℄). Let k � 2 be an even integer, and� � SL2(Z) be a 
ongruen
e subgroup. If Mk(�) is the spa
e of modularforms of weight k for � � SL2(Z), thendim(Mk(�)) = (k � 1)(g � 1) + 12�1k +Xp �k2 �1 � 1ep�� ;where g is the genus of �nH � , �1 is the number of inequivalent 
usps of �,the sum is over ellipti
 points p of �, ep is the order of the stabiliser of p,and bx
 is the greatest integer fun
tion.For the group �0(4), Milne 
omputes [Mi, Example 2.23℄ that the genusg is zero, and there are no ellipti
 points.3 Sin
e �0(4) has three 
usps, wehave for k even, dim(Mk(�0(4))) = 1 + k2 : (3.11)For k = 2 the spa
e of non-
usp forms is two-dimensional (
f. dis
ussion be-fore Proposition 3.9), and therefore it is equal to the entire spa
eM2(�0(4)).For k > 2 the three Eisenstein series are linearly independent non-
usp forms,and thus for k = 4 they span the entire spa
e M4(�0(4)). Thus for n = 4 or8 the 
usp form Fn=2(z) must be identi
ally zero.3A
tually, the 
omputation is 
arried out for �(2), whi
h is 
onjugate to �0(4).27



The se
ond proof of Proposition 3.10 leads to an interesting observation:From Result 3.11 we see that that the zeroes of the weight-12 modular form� have total order 6, and therefore equation (3.11) implies that the upperbound (2.12) that we 
omputed for the dimension of Mk(�0(4)) when 12jkis in fa
t an equality.We now have all the ingredients ne
essary to give the formulae for thenumber of representations of an integer n as the sum of 4 or 8 squares.Proof of Theorem 2. By de�nition, the number rs(n) is the nth Fourier
oeÆ
ient of the fun
tion �s(z). By Proposition 2.8 and Corollary 2.6, �s(z)is a modular form of weight s=2 for �0(4). By Corollary 3.4 (using Proposition3.9 to extend to weight 2),�s(z) = E(1)s=2 (z) + i�s=2E(0)s=2(z) + Fs=2(z);where Fs=2(z) is a 
usp form. By Proposition 3.10, Fs=2(z) is identi
allyzero for s = 4 or 8. The Fourier 
oeÆ
ients an of �s(z) may therefore be
al
ulated from Proposition 3.8.For s = 4, Proposition 3.8 (extended to weight 2 and using equation (3.6)to 
ompute B2 = 1=6) givesan = 80BBB� Xdjnn=d oddd � Xdjnn=d even(�1)dd1CCCA :If n is odd, the se
ond sum is zero. If n = 2am for odd m, then ea
h divisord of m 
orresponds to divisors 2ad; 2a�1d; : : : ; 2d; d of n. The 
ontribution tothe sum is thus 8d(2a � 2a�1 � :::� 2 + 1) = 24d. We 
on
lude thatan = 8>>><>>>: 8Xdjn d for n odd24 Xdjnd oddd for n even.For s = 8, Proposition 3.8 (using equation (3.6) to 
ompute B4 = �1=30)gives an = 160BBB� Xdjnn=d oddd3 � Xdjnn=d even(�1)dd31CCCA :28



We note that in the �rst sum n� d is even, and in the se
ond sum n� 2d iseven, so we may multiply by (�1)n�d and (�1)n�2d respe
tively to 
on
ludean = 16Xdjn (�1)n�dd3:4 Fourier CoeÆ
ients of Cusp FormsCorollary 3.4 gives an expression for the theta fun
tion as a sum of Eisensteinseries and 
usp forms, and Propositions 3.5 and 3.8 give formulae for theFourier 
oeÆ
ients of the Eisenstein series. For these formulae to be usefulin 
al
ulating the number of representations as sums of squares, we mustshow that the Fourier 
oeÆ
ients of 
usp forms are not too large. There areresults of varying depth and generality for this problem, but it turns out thatthe simplest bound is enough for our purposes, sin
e for k > 2 it is stri
tlysmaller than the bound for the Eisenstein series derived in Corollary 3.7.Our dis
ussion of the Poin
ar�e series follows that of Sarnak [S2, x1.5℄;Iwanie
 [I, x3℄ treats the topi
 in greater generality. Our treatment of Kloost-erman sums and bounds for the Fourier 
oeÆ
ients of 
usp forms roughlyfollows that of Iwanie
 [I, x4-5℄.Proposition 4.1. Suppose f(z) = 1Xn=1 ane2�inzis a 
usp form of weight k for �0(4). Then there exists some positive 
onstantC su
h that janj � C � nk=2:Proof. Sin
e Im(
z) = Im(z)= j
z + dj2 for any 
 2 SL2(R) and f(z) isa modular form of weight k, the fun
tion F (z) = jf(z)j Im(z)k=2 is �0(4)-invariant. Sin
e f(z) de
ays exponentially at the 
usps, F (z) is bounded onall of H ; say jF (z)j �M .For the Fourier 
oeÆ
ient an, we havean = Z 1+iyiy e�2�inzf(z)dz;29



where z = x+ iy. Thusjanj � e2�ny Z 10 jf(x + iy)jdx �Me2�nyy�k=2:Setting y = 1=n gives the result.We now have all of the ne
essary tools to prove Theorem 1.Proof of Theorem 1. By de�nition, the number rs(n) is the nth Fourier
oeÆ
ient of the fun
tion �s(z). By Proposition 2.8 and Corollary 2.6, �s(z)is a modular form of weight s=2 for �0(4). By Corollary 3.4 (and its extensionto weight 2 in Proposition 3.9), for s � 4,�s(z) = E(1)s=2 (z) + i�s=2E(0)s=2(z) + Fs=2(z);where Fs=2(z) is a 
usp form. By Corollary 3.7, the nth Fourier 
oeÆ
ients ofE(1)s=2 (z) and E(0)s=2(z) are O �ns=2�1�, and by Proposition 4.1, the nth Fourier
oeÆ
ient of Fs=2(z) is O(ns=4).Note that for s = 4, Theorem 1 splits r4(n) into two terms that are bothO(n), whi
h is not parti
ularly useful; however, by Proposition 3.10 the term
orresponding to the 
usp form vanishes. For s > 4, the term 
orrespondingto the Eisenstein series dominates, and Propositions 3.5 and 3.8 give formulaefor rs(n) with error no more than a 
onstant times ns=4.4.1 Poin
ar�e SeriesThe bound in Proposition 4.1, though it is strong enough to prove Theorem1, is not the best possible, and we devote the remainder of the se
tion toimproving the bound. These improvements provide only marginal gain when
ounting representations as sums of �ve or more squares, and by Proposition3.10 they are not ne
essary for 
ounting sums of four squares. However, animprovement on Proposition 4.1 is essential to get a nontrivial estimate ofrepresentations by more general quadrati
 forms in four variables, sin
e the
usp forms that vanish for sums of squares may not do so in the general 
ase.We begin by showing that the spa
e of 
usp forms is spanned by a set offorms 
alled Poin
ar�e series. The 
onstru
tion of the Poin
ar�e series is verysimilar to the 
onstru
tion of the Eisenstein series.30



De�nition. Let m be a nonnegative integer and k > 2 be a half integer. Fors 2 Q [ f1g, 
hoose Æ 2 SL2(Q) su
h that Æs = 1. The mth Poin
ar�eseries of weight k at the 
usp s for �0(4) isP (s)m;k(z) = X
2�1n�0(4) j(
; Æz)�2ke2�im
Æz;where the automorphy fa
tor j is de�ned by equation (2.11).To see that the series is well-de�ned, note �rst that for 
1 = ( a b
 d ) and 
2 =� a0 b0
 d � in the same 
oset of �1, 
1Æz � 
2Æz = 
3Æz, where 
3 = � a�a0 b�b0
 d �is a nonzero matrix with determinant zero. Sin
e all entries are integers and(
; d) = 1, 
3 = ( r
 rd
 d ) for some integer r. Thus e (m
3Æz) = e (rm) = 1, ande (m
1Æz) = e (m
2Æz).Note that for m = 0 the Poin
ar�e series are the Eisenstein series. Ea
hterm of a Poin
ar�e series has absolute value less than or equal to the 
or-responding term in the Eisenstein series, so ea
h series 
onverges absolutelyfor k > 2 and all m. (As with the Eisenstein series, we may extend to the
ase k = 2 via 
areful summation, but we will not need this result.) Thatthe Poin
ar�e series are of any interest at all is due to the following result:Proposition 4.2. For m � 1, k > 2, and any s 2 Q [ f1g, the mthPoin
ar�e series of weight k at the 
usp s for �0(4) is a 
usp form.Proof. By the same reasoning as in the proof of Proposition 3.2, for � 2�0(4), P (s)m;k(�Æz) = X
2�1n�0(4)� j(�; Æz)j(
�; Æz)��2k e2�im
�Æz;and sin
e right multipli
ation by � merely permutes the 
osets of �1n�0(4),we �nd P (s)m;k(�Æz) = j(�; Æz)2kP (s)m;k(Æz): (4.1)We now 
al
ulate the values at the 
usps for the Poin
ar�e series at in�nity;the 
al
ulations for the other series are identi
al. Let s be a 
usp of �0(4),and Æ = ( a b
 d ) 2 SL2(Q) su
h that Æ(1) = s. Let w = Æ�1z be the lo
alvariable at the 
usp s. ThenP (1)m;k j[Æ℄k (w) = (
w + d)�k X
2�1n�0(4) j(
; Æ�1w)�2ke2�im
Æ�1w:31



For any matrix 
 = ( a b
 d ) 2 GL2(R), let j 0(
; z) = j
z + dj1=2. Takingabsolute values of the Poin
ar�e series term by term, we have���P (1)m;k j[Æ℄k (w)��� � j 0(Æ; w)�2k X
2�1n�0(4) j0(
; Æ�1w)�2ke�2�m�(
);where �(
) = Im(
Æ�1w). A simple 
omputation shows that for any matri
es�, �, j0(��z) = j 0(�; �(z)) � j 0(�; z):Applying this relation gives���P (1)m;k j[Æ℄k (w)��� � � j0(Æ; w)j0(Æ�1; w)��2k X
2�1n�0(4) j0(
Æ�1; w)�2ke�2�m�(
)� � j0(Æ; w)j0(Æ�1; w)��2k0BBB�e�2�m�(
0) + X
2�1n�0(4)
Æ�1 6=I j0(
Æ�1; w)�2k1CCCA ;where in the se
ond line we have split out the term (if any) 
orrespondingto a 
0 su
h that 
0Æ�1 2 �1. If we let w = iy, all the terms inside thesummation go to zero as w goes to in�nity, so by the same reasoning as inthe proof of Proposition 3.3, the sum is bounded by Cy�k+2 for some 
onstantC. Furthermore, the 
oeÆ
ient j 0(Æ; iy)=j 0(Æ�1; iy) is equal to 1, so we have���P (1)m;k j[Æ℄k (w)��� � e�2�m�(
0) + Cyk�2 :The se
ond term 
learly goes to zero as y goes to in�nity, and sin
e 
0Æ�1is in the stabiliser of in�nity, the �rst term also goes to zero as y goes toin�nity.Carrying out the above 
al
ulation for ea
h Poin
ar�e series, we 
on
ludethat P (s)m;k is holomorphi
 at all 
usps of �0(4), and furthermore, that its valueat every 
usp is zero. This result and the transformation property (4.1) implythat all of the Poin
ar�e series are 
usp forms.Next we show that the Poin
ar�e series span the spa
e of all 
usp forms.To do this we use the Petersson inner produ
t h�; �i on Sk(�0(4)), the spa
eof 
usp forms of weight k for �0(4). This inner produ
t is de�ned byhf; gi = Z�0(4)nH ykf(z)g(z)dx dyy232



for f; g 2 Sk(�0(4)). The integral is well-de�ned be
ause for 
 = ( a b
 d ) 2SL2(R) we have Im(
z) = Im(z)j
z + dj2 ;and thus the fun
tion ykf(z)g(z) and the di�erential y�2dx dy are �0(4)-invariant. The integral 
onverges (absolutely) sin
e f and g are 
usp formsand therefore de
ay exponentially as y goes to in�nity. It is 
lear from thede�nition that this is indeed an inner produ
t: it is bilinear, hf; gi = hg; fi,and hf; fi is a nonnegative real number that is equal to zero if and only if fis identi
ally zero. We now use this inner produ
t to 
ompute the proje
tionof an arbitrary 
usp form f onto the Poin
ar�e series.Lemma 4.3. Let k > 2 be a half integer, and let P (1)m;k (z) be the mth Poin
ar�eseries of weight k at in�nity for �0(4). Suppose f 2 Sk(�0(4)) su
h thatf(z) = 1Xn=1 ane2�inz:Then Df; P (1)m;k E = �(k � 1)(4�m)k�1am:Proof. From the de�nition of the Petersson inner produ
t and of the Poin-
ar�e series,Df; P (1)m;k E = Z�0(4)nH X
2�1n�0(4)f(z)j(
; z)�2ke�2�im
zyk dx dyy2= Z�1nH f(z)e�2�imzyk dx dyy2= 1Xn=1 Z 10 Z 10 ane2�i(nz�mz)yk dx dyy2 ;where the absolute 
onvergen
e of the sum and the integral have allowed usto inter
hange the order of summation and integration. The only term thatdoes not vanish identi
ally is n = m; in that 
ase, using z � z = 2iy and thede�nition of the Gamma fun
tion givesZ 10 Z 10 e�4�myyk�2dx dy = �(k � 1)(4�m)k�1 ;from whi
h the result follows immediately.33



From this lemma, we dedu
e that all 
usp forms are linear 
ombinationsof Poin
ar�e series.Proposition 4.4. For k > 2 a half integer, the spa
e of 
usp forms Sk(�0(4))is spanned by the Poin
ar�e series P (1)m;k for m 2 N.Proof. Let V � Sk(�0(4)) be the linear subspa
e spanned by the P (1)m;k . ByProposition 2.10, Sk(�0(4)) is �nite dimensional, and therefore if there issome nonzero f 2 Sk(�0(4)) n V , then there is some nonzero g orthogonal toV . By Lemma 4.3, the Fourier 
oeÆ
ients of any su
h g all vanish, and thusg is identi
ally zero, a 
ontradi
tion.Note that we have not used any spe
ial property of the 
usp at in�nity,and therefore Proposition 4.4 also holds for the Poin
ar�e series at any 
usp s.There are many open questions about Poin
ar�e series whi
h stem naturallyfrom the above results, in
luding:� What are the linear relations between the various Poin
ar�e series?� Constru
t a basis of Sk(�0(4)) 
onsisting of Poin
ar�e series.� Whi
h of the Poin
ar�e series do not vanish identi
ally?For a summary of some of the known results to these questions, see [I, x3.3℄.4.2 Kloosterman SumsSin
e the spa
e of 
usp forms Sk(�0(4)) is �nite-dimensional, Proposition 4.4redu
es the problem of bounding the Fourier 
oeÆ
ients of 
usp forms to thesame problem for Poin
ar�e series. We now show that this problem in turn
omes down to estimating 
ertain exponential sums 
alled Kloosterman sumswhi
h arise in the Fourier expansion of the Poin
ar�e series. In the remainderof the se
tion, we outline various methods for estimating Kloosterman sums,ea
h of whi
h improves the estimate in Proposition 4.1. The dis
ussion thatfollows will not be as rigorous as that above; for more details see [S2℄ and [I℄.Proposition 4.5. Let Pk;m(z) be the mth Poin
ar�e series at in�nity of weightk > 2 for �0(4). Then Pk;m(z) =P1n=1 ane2�inz, withan = Æmn + 2�i�k � nm�k�12 X4j

>0 
�1Jk�1�4�pmn
 �S(m;n; 
);34



where J�(x) is the Bessel fun
tion of order � de�ned byJ�(z) = 1Xj=0 (�1)jj!�(j + 1 + �) �x2��+2j ;and S(m;n; 
) is the Kloosterman sumS(m;n; 
) = Xad�1 (mod 
)� 
d�2k ��2kd e�ma+ nd
 � : (4.2)Proof. From the de�nition of the Poin
ar�e series, we havePk;m(z) = e (mz) + X
2�1n�0(4)=�1
 6=1 X�2�1 j(
�; z)�2ke (m
�z)= e (mz) + X
=( a b
 d )2�1n�0(4)=�1
6=0 � 
d��2k �kdXn2Z(
(z + n) + d)�ke�ma
 � m
(
(z + n) + d)� ;where we have used ad� b
 = 1 to write
�z = �a b
 d��1 n0 1� z = a
 � 1
(
(z + n) + d)z :Applying the Poisson summation formula (Result 2.1) givesPk;m(z) = e (mz) + X
2�1n�0(4)=�1
6=0 � 
d��2k �kdXn2ZZ 1�1(
(z + v) + d)�ke�ma
 � m
(
(z + v) + d) � nv� dv;and making the substitution u = z + v + d=
 givesPk;m(z) = e (mz) +X4j

>0 Xad�1 (mod 
)� 
d��2k �kdXn2Ze�nz + ma+ nd
 �Z 1+iy�1+iy(
u)�ke�� m
2u � nu� du:35



By Cau
hy's theorem, the integral does not depend on y, and thus for n � 0letting y go to in�nity shows that the integral vanishes. For n > 0, theintegral evaluates to 2�ik
 � nm� k�12 Jk�1�4�pmn
 � ;so if we de�ne the Kloosterman sum S(m;n; 
) by equation (4.2), then wehavePk;m(z) = e (mz) + 2�ik 1Xn=1 � nm�k�12 e (nz)X4j

>0 
�1S(m;n; 
)Jk�1�4�pmn
 � ;whi
h proves the proposition.Sin
e there is a well-known bound for the Bessel fun
tion, estimatingthe Fourier 
oeÆ
ients of 
usp forms be
omes a matter of estimating theKloosterman sums. We fo
us on the 
ase where the weight k is an eveninteger, in whi
h 
ase the Legendre symbol and �d drop out, and we have theso-
alled \
lassi
al" Kloosterman sumS(m;n; 
) = Xad�1 (mod 
) e�ma+ nd
 � :We note that the sum S(m;n; 
) is a real number sin
e for ea
h pair (a; d)with ad � 1 (mod 
), (�a;�d) is a di�erent pair with the same property.The Kloosterman sums satisfy some basi
 properties whi
h simplify 
al-
ulations. If (a; 
) = 1 we haveS(am; n; 
) = S(m;an; 
); (4.3)and if (
1; 
2) = 1 we haveS(m;n; 
1
2) = S �m; 
22n; 
1�S �m; 
12n; 
2� ; (4.4)where 
1 and 
2 are multipli
ative inverses of 
1 and 
2 modulo 
2 and 
1,respe
tively. This multipli
ativity property allows us to restri
t our attentionto the sum S(m;n; p) where p is a prime. We will need the following lemma,whi
h bounds the number of distin
t prime divisors of an integer 
.Lemma 4.6. For n a positive integer, let !(n) be the number of distin
tprime divisors of n. Then for any � > 0, there exists some C > 0 su
h thatfor all n, !(n) � � log n + C:36



Proof. Sin
e the sequen
e of primes is stri
tly in
reasing, given any a > 1there exists some r > 0 su
h that for any positive integer m, the produ
t ofthe �rst m primes is greater than ram, and therefore any integer less thanram has at most m distin
t prime fa
tors. If we substitute n = ram, then nhas at most (log n� log r)= log a distin
t prime fa
tors. Substituting a = e1=�gives the result.Lemma 4.6 and the multipli
ativity property (4.4) allow us to translate abound on the Kloosterman sums S (m;n; p�) into a bound on all Kloostermansums S(m;n; 
).Proposition 4.7. Suppose that for p prime and � a positive integer, theKloosterman sum de�ned in (4.2) (with k a positive even integer) satis�esS(m;n; p�) � C � p��for some � 2 [0; 1) and some positive 
onstant C. Then the nth Fourier
oeÆ
ient of the mth Poin
ar�e series of weight k for �0(4) satis�esjanj � C 0 � n k�12 +�2+�for some positive 
onstant C 0 and any � > 0.Proof. By the multipli
ativity property of Kloosterman sums (4.4),S(m;n; 
) = C!(
)
�;where !(
) is the number of distin
t prime divisors of 
. By Lemma 4.6,there exists a 
onstant D su
h that !(
) � � log 
+D, and thus jS(m;n; 
)j �D0 � 
�+� for some D0.The bound for the Bessel fun
tion isJ�(x) � R �min�x�; 1px� ;for some positive R, whi
h gives J�(x) � R �xÆ for any Æ 2 [�1=2; �℄. Setting� = k � 1 and Æ = � + 2�, (where we have 
hosen � so that � + 2� < k � 1),we have from Proposition 4.5,janj � R � nm� k�12 X4j

>0 �4�pmn��+2� 
�1��:The sum 
onverges for any � > 0, and thus for any given m and n we havethe result. 37



For � � 2 and p an odd prime, the Kloosterman sum S(m;n; p�) 
an beevaluated expli
itly for 
ertain values of m and n; see [I, x4℄ for details. Theresult is that for p a prime and � � 2 an integer,jS (m;n; p�)j � 2p�=2 (4.5)for any m and n.The Kloosterman sum S(m;n; p) 
annot be evaluated expli
itly in thesame manner, and the work on estimating Kloosterman sums primarily in-volves improving the estimate on this sum. Kloosterman himself 
al
ulateda nontrivial estimate using \power-moments" de�ned byV`(p) = Xa (mod p)a6=0 S(a; 1; p)`: (4.6)For ` = 4, one 
an 
ompute (see [I, x4.4℄)V4(p) = 2p3 � 3p2 � p � 1:Dropping all but the term a � mn (mod p) in equation (4.6) givesS(mn; 1; p)4 � V4(p) � 2p3;and applying the property (4.3) givesjS(m;n; p)j � 2p3=4if (p; n) = 1. If pjn thenS(m;n; p) = � �1 if (p;m) = 1p � 1 if (p;m) 6= 1.Sin
e there are only a �nite number of su
h p they may be absorbed into the
onstant, giving jS(m;n; p)j � C � p3=4for all p. With this result and the bound (4.5), we may take � = 3=4 inProposition 4.7, whi
h givesjanj = O �n k2� 18+�� :In 1948, A. Weil proved the Riemann hypothesis for 
urves over �nite�elds, from whi
h he dedu
ed the so-
alled \Weil bound,"jS(m;n; p)j � 2p1=2: (4.7)38



This bound and equation (4.5) give � = 1=2 in Proposition 4.7, and thusjanj = O �n k2� 14+�� :Weil's proof of the bound (4.7) is quite deep; Iwanie
 [I, x5.2℄ gives an ele-mentary proof of the same bound by estimating sums of Kloosterman sums.Finally, we note that for even weights k, the best possible bound for anis given by the \Ramanujan 
onje
ture,"janj = O �n k2� 12+�� :This 
onje
ture was proven in 1974 by P. Deligne.If the weight k is odd or half an odd integer, the 
al
ulations are moresubtle but the idea is the same. One use multipli
ative properties of theKloosterman sums (in this 
ase also 
alled \Sali�e sums") to redu
e the prob-lem to estimating S(m;n; p�) for p prime. The 
ru
ial estimate (see [I, x4.6℄)is again jS(m;n; p)j � 2p1=2;whi
h gives janj = O �n k2� 14+�� :For general n this is the best bound possible, while for n square-free it 
anbe improved (see [S2, Ch. 4℄) tojanj = O �n k2� 27+�� :The analogue of the Ramanujan 
onje
ture for half-integer weight k isjanj = O �n k2� 12+��for n square-free, but unlike the 
onje
ture for even weight k, this result hasyet to be proven. The best bounds to date for the fun
tion hs(n) in Theorem1 are thereforehs(n) = 8>>>><>>>>: O �n s4� 14+�� for s � 4, n � 0O �n s4� 27+�� for s � 4, n � 0 square-freeO �n s4� 12+�� for s � 4, 4js, n � 0.39



5 Sums of Higher PowersIn Se
tions 2 through 4, we used the theory of modular forms to 
ountrepresentations of integers as sums of squares. A natural question to askis whether the results and methods generalise to sums of 
ubes and higherpowers. Indeed, there is an analogue of Theorem 1 for sums of an arbitrarypower, but the result 
annot be derived via modular forms. Instead, oneuses the \
ir
le method" devised by Hardy and Littlewood to 
ompute anorder-of-magnitude estimate. The main result is:Theorem 3. Suppose k and s are integers su
h that k � 2 and s > 2k. Forn a positive integer, let rk;s(n) be the number of solutions in positive integersto the equation xk1 + : : :+ xks = n:Then rk;s(n) = S(n)��1 + 1k�s �� sk��1 ns=k�1 + hs;k(n);where S(n) is an arithmeti
 fun
tion that is bounded above and below by
onstants depending only on s and k, and hs;k(n) = O(ns=k�1��) for some� > 0.As in the 
ase of sums of s squares, the problem 
omes down to estimatingFourier 
oeÆ
ients of a 
ertain \generating fun
tion" raised to the sth power.The generating fun
tion in the general 
ase isfk(z) = 1Xm=0 e2�imkz:From this de�nition, we see that fk(z)s has a Fourier series,fk(z)s = 1Xn=0 ane2�inz;and that the Fourier 
oeÆ
ients an are exa
tly the number of representationsrk;s(n). Note that for k = 2, fk(z) is almost the fun
tion �1(z) we 
onsideredin Se
tion 2, the only di�eren
e being that we are now summing over positiveintegers only.One might hope that the fun
tion fk(z) (whi
h 
onverges for z 2 H ) hastransformation properties that allow us to 
onsider it as a modular form.Indeed, we have the relation fk(z + 1) = fk(z) for all z 2 H . However,40



to derive the formula for �n(�1=z) in Proposition 2.3 we used the Poissonsummation formula and applied the fa
t that the Fourier transform of thetheta fun
tion is another theta fun
tion, or, more pre
isely, that the Fouriertransform of a Gaussian is another Gaussian. In the general 
ase, the termsof fk(z) are not Gaussians, and thus we 
annot take a Fourier transform andhope to re
over some other form of fk(z). Our hopes of using the theoryof modular forms to estimate the Fourier 
oeÆ
ients of fk(z)s are thereforedashed, and we must turn to another method.The following dis
ussion of the 
ir
le method is based 
losely on thatof Nathanson [N, x4-5℄. Vaughan [V, x2℄ and Davenport [D, x2-6℄ providesimilar expositions.5.1 The Cir
le MethodThe Hardy-Littlewood 
ir
le method estimates the Fourier 
oeÆ
ients offk(z)s by 
omputing them dire
tly via integration. Before des
ribing themethod, we make a simpli�
ation due to Vinogradov, whi
h is to repla
e thein�nite series fk(z) with a trigonometri
 polynomial. For any positive integerN , let P = �N1=k�, and let pk(z) = PXm=0 e �mkz� :(As before, e (z) = e2�iz.) Then the �rst N Fourier 
oeÆ
ients of pk(z)smat
h those of fk(z)s, and the problem of 
omputing rk;s(n) is redu
ed to
omputing Fourier 
oeÆ
ients of pk(z)s for suÆ
iently large N . We thushave rk;s(n) = Z 10 pk(�)se (�n�) d�; (5.1)whi
h follows from the orthogonality relation,Z 10 e (m�) e (�n�) d� = Æmn:(Here and throughout the remainder of this se
tion, we impli
itly assumethat we have �xed a spe
i�
 n and 
hosen N = n.)The idea behind the 
ir
le method is to divide the interval of integrationinto two subsets: the \major ar
s" M and the \minor ar
s" m. The majorar
s 
onsist of points � that are near a rational number with small denomina-tor. (The terms \near" and \small" will be made more pre
ise later.) These41



points give a nontrivial 
ontribution to the integral. As a simple example,
onsider � = 1=3 and k = 4. Sin
ee�m43 � = � 1 if m � 0 (mod 3)�12 + ip32 if m � 1 or 2 (mod 3) ;p4(1=3) is roughly equal to Ni=p3, so the 
ontribution to the integral isO(N). The minor ar
s, on the other hand, 
onsist of points that are notnear a rational number with small denominator; these points give a negligible
ontribution to the integral. For example, if � is irrational, the numbersfe �nk�� : n 2 Zg are uniformly distributed on the unit 
ir
le, and thus forsuÆ
iently large N , the sum as n ranges from 1 to N is very small relativeto N .To 
onstru
t the major and minor ar
s expli
itly, we assume n � 2k, soP � 2. Choose � 2 (0; 1=5), and for every pair of relatively prime integers(q; a) with 1 � q � P � and 0 � a � q, de�neM(q; a) = �� 2 [0; 1℄ : ����� � aq ���� � 1P k�v� ;and let M = [1�q�P � [0�a�q(q;a)=1M(q; a):The setM(q; a) is 
alled a major ar
 (though it is a
tually an interval), andM is the set of all major ar
s. The major ar
s thus 
onsist of all � 2 [0; 1℄that are near a rational number with denominator smaller than P � . Themajor ar
s are disjoint, for if � 2 M(q; a) \M(q0; a0) and a=q 6= a0=q0, thenjaq0� a0qj � 1 and 1P 2� � 1qq0� ����aq � aq0 ����� ����� � aq ����+ ����� � a0q0 ����� 2P k�� ;whi
h is impossible sin
e P � 2 and k � 2.42



The width of the intervalM(q; a) is 2P ��k , ex
ept when q = 1, in whi
h
ase the width is P ��k . The number of major ar
s isP �Xq=1 '(q) � P �Xq=1 q = 12P � (P � + 1);and therefore the total measure of the set of major ar
s is�(M) � 2P ��kP � (P � + 1)2 � 2P k�3� : (5.2)Thus the measure of the major ar
s goes to zero as n goes to in�nity.Next, we de�ne the set of minor ar
s to bem = [0; 1℄ nM:This set is a �nite union of (disjoint) open intervals and 
onsists of all � 2[0; 1℄ that are not near a rational number with denominator smaller than P � .From (5.2), we see that the measure of the set of minor ar
s approa
hes 1 asn approa
hes in�nity.We may thus split our expression for rk;s(n) into two terms:rk;s(n) = ZM pk(�)se (�n�) d�+ Zm pk(�)se (�n�) d�: (5.3)We will see below that even though the minor ar
s 
omprise the bulk of theunit interval, their 
ontribution to the integral is negligible, and estimatingrk;s(n) 
omes down to estimating the integral over the major ar
s.5.2 The Minor Ar
sWhen k = 1, the polynomialpk(�) = PXm=0 e �mk��is a geometri
 series and is thus easy to estimate. For k > 1, one 
an usea \forward di�eren
e operator" to estimate pk(�) in terms of sums in whi
hmk is repla
ed by a polynomial in m of degree k � 1. Repeated appli
ationsof this argument redu
e to the 
ase k = 1. The rigorous des
ription of thisargument follows from a series of lemmas, whi
h we will state but not provein full detail. For a 
omplete treatment, see [N℄ or [V℄.43



For any fun
tion f : R! R, de�ne the forward di�eren
e operator �d by�d(f)(x) = f(x+ d)� f(x):For ` � 2, de�ne the `th iterate of the forward di�eren
e operator,�d`;:::;d1 = �d` Æ�d`�1 � � � Æ�d1:The di�eren
e operator redu
es degrees of polynomials; for example, if wetake f(x) to be xk, then�d`;:::;d1(xk) = d1 � � � d`hk�`(x);where hk�`(x) is a polynomial in x of degree k � ` with integer 
oeÆ
ients.If we let f(x) be an arbitrary polynomial of degree k andT (f) = QXx=1 e (f(x)) ; (5.4)then we may use the di�eren
e operator to make the estimate,jT (f)j2j � (2Q)2j�j�1 Xd1;:::;djjdij�Q Xx2I e (d1 � � � djhk�j(x)) ; (5.5)where I 
onsists of integers in a subinterval of [1; Q℄, and hk�j(x) is a poly-nomial of degree k � j. If we assume that the leading 
oeÆ
ient of f(x) isnear a rational number with denominator q, then we may bound the sum interms of powers of q and Q, whi
h gives the following result:Lemma 5.1 (Weyl's inequality). Let f(x) = �xk+ : : : be a polynomial inx of degree k � 2 with real 
oeÆ
ients, and suppose������ aq ���� � 1q2 ;where q � 1 and (a; q) = 1. Let K = 2k�1 and � � 0, and de�ne T (f) asin (5.4) above. Then there exists some positive 
onstant C (depending on kand �) su
h that jT (f)j � C �Q1+� �q�1 +Q�1 +Q�kq�1=K :Weyl's inequality allows us to bound pk(�) at any given � in terms ofn and the denominator of a rational number near �. However, we wish tobound pk(�) as it is integrated over all � 2 m. This is a

omplished viaHua's lemma. 44



Lemma 5.2 (Hua's lemma). For k � 2 and any � > 0, there exists somepositive 
onstant C (depending on k and �) su
h thatZ 10 jpk(�)j2k d� � C � P 2k�k+�:Proof. The proof pro
eeds by indu
tion on j for j = 1; : : : ; k. The base 
asej = 1 is 
lear sin
eZ 10 jT (�)j2 d� = PXm=1 PXn=1 Z 10 e ��(mk � nk)� d� = P:Now assume the result holds for some j � k� 1. By equation (5.5), we havejpk(�)j2j � (2P )2j�j�1 Xd1;:::;djjdij�P Xx2I e (�d1 � � � djhk�j(x)) ;where hk�j(x) is a polynomial of degree k � j with integer 
oeÆ
ients, andI is an interval of 
onse
utive integers 
ontained in [1; P ℄. It follows thatjpk(�)j2j � (2P )2j�j�1Xd r(d)e (�d) ; (5.6)where r(d) is the number of fa
torisations of d in the formd = d1 � � � djhk�j(x)with di < P and x 2 I.Similarly, by writingjpk(�)j2j = pk(�)2j�1pk(��)2j�1;one obtains jpk(�)j2j =Xd s(d)e (��d) ; (5.7)where s(d) is the number of representations of d in the formd = j�1Xi=1 yki � j�1Xi=1 xkiwith 1 � xi; yi � P . ThenXd s(d) = jpk(0)j2j = P 2j ; (5.8)45



and by the indu
tive hypothesis,s(0) = Z 10 jpk(�)j2j d� � C 0 � P 2j�j+� (5.9)for some 
onstant C 0. It follows from (5.6) and (5.7) thatZ 10 jpk(�)j2j+1 d� � (2P )2j�j�1 Z 10 Xd r(d)e (�d)Xd s(d)e (��d)� (2P )2j�j�1 r(0)s(0) +Xd6=0 r(d)s(d)! :One 
an then show that r(0) = O(P j) and for d > 0, r(d) = O(P �) for any� > 0. Combining these fa
ts with the bounds (5.8) and (5.9) givesZ 10 jpk(�)j2j+1 d� � C � P 2j�j�1 �P jP 2j�j+� + P �P 2j�� 2C � P 2j+1�(j+1)+�for some 
onstant C, and thus the result holds for j + 1.Weyl's inequality and Hua's lemma are the two major ingredients inbounding the minor ar
s term. In addition, we use a result of Diri
hletthat says how 
losely we may approximate a number by a rational.Lemma 5.3 (Diri
hlet). Let � and Q be real numbers, Q � 1. Then thereexist relatively prime integers a and q su
h that 1 � q � Q and������ aq ���� < 1qQ:We now have all the tools ne
essary to bound the minor ar
s term inequation (5.3).Proposition 5.4. Let k � 2 and s � 2k + 1. Then there exists � > 0 su
hthat Zm pk(�)se (�n�) d� = O �n sk�1��� ;where the implied 
onstant depends only on k and s.46



Proof. We have to save an amount n�1�� over the trivial estimate ns=k.Hua's lemma saves n��1, and Weyl's inequality saves the rest.By Diri
hlet's theorem (Lemma 5.3) with Q = P k�� , for any real number� we 
an �nd a fra
tion a=q with 1 � q � P k�� and (a; q) = 1 su
h that������ aq ���� � 1qP k�� � min� 1P k�� ; 1q2� :Sin
e � 2 m � (P ��k ; 1 � P ��k), we have 1 � a � q � 1. If q � P � , then� 2 M(q; a), whi
h 
ontradi
ts our assumption that � 2 m. Thus q > P � .Applying Weyl's inequality (Lemma 5.1) with f(x) = �xk, we have for any�0 > 0, jpk(�)j � C � P 1+�0 �q�1 + P�1 + P�kq�1=K � C1 � P 1+�0��=K ;where K = 2k � 1. With this result and Hua's lemma (Lemma 5.2), we have����Zm pk(�)se (�n�)���� d� � sup�2m jpk(�)js�2k Z 10 jpk�j2k d�� �C1 � P 1+�0��=K�s�2k �C2 � P 2k�k+�0�� C � P s�k+Æ;where we have 
ombined the 
onstants into C and setÆ = �K �2k � s�+ �0 �s� 2k + 1� :Sin
e s > 2k, we 
an 
hoose �0 suÆ
iently small so that Æ < 0. Letting� = �Æ=k and using the de�nition P = �N1=k� gives the result.5.3 The Major Ar
sTo estimate the major ar
s term in equation (5.3), we begin by writing thefun
tion pk(�) on the major ar
s as the produ
t of two exponential sums plusa small error term. Bounding these sums and integrating over the major ar
sgives us a bound for the major ar
s term in terms of an exponential sum
alled the \singular series," an integral 
alled the \singular integral," and asmall error term. Further 
al
ulations then show that the singular series isbounded by a 
onstant, and the singular integral is O �ns=k�1�. As in theprevious se
tion, we omit many of the details; for a full treatment, see [N℄ or[V℄. 47



We start by introdu
ing the auxiliary fun
tionsv(�) = NXm=1 1km 1k�1e (m�) ;S(q; a) = qXr=1 e�arkq � :Roughly speaking, the fun
tion v(�) measures the probability that m is akth power, and S(q; a) measures the distribution of the kth powers mod-ulo q. When � is 
ontained in the major ar
 M(q; a), then pk(�) is wellapproximated by the produ
t of these two fun
tions. Spe
i�
ally,pk(�) = �S(q; a)q � v�� � aq�+O �P 2�� : (5.10)If we write V (�; q; a) = �S(q; a)q � v�� � aq� ;then fa
toring the expression pk(�)s � V (�; q; a)s and applying (5.10) showsthat pk(�)s � V (�; q; a)s = O �P s�1+2�� :Integrating over the major ar
s and applying the estimate for �(M) in (5.2)gives ZM jpk(�)s � V (�; q; a)sj d� = O �P s�k�Æ1�for some Æ1 > 0. Sin
e the integral over all of M is equal to the sum of theintegrals over the individual ar
s M(q; a), we see thatZM pk(�)se (�n�) d� =X1�p�P � X0�a�q(a;q)=1ZM(q;a) V (�; q; a)se (�n�) d�+O �P s�k�Æ1� :Further algebrai
 manipulation leads to the following result:Lemma 5.5. LetS(n;Q) = X1�q�Q X1�a�q(a;q)=1�S(q; a)q �s e��naq � ;J�(n) = Z P ��k�P ��k v(�)se (�n�) d�:48



Then ZM pk(�)se (�n�) d� = S(n; P �)J�(n) +O �P s�k�Æ1� :Lemma 5.5 tells us that estimating the major ar
s term 
omes down toestimating the sum S(n; P �) and the integral J�(n). The �rst step in esti-mating the integral J�(n) is to show that expanding the range of integrationintrodu
es only a small error. LetJ(n) = Z 1=2�1=2 v(�)se (�n�) d�:The fun
tion J(n) is 
alled the singular integral. One may use the boundv(�) � C �min�P; j�j�1=k�for j�j � 1=2 to show thatjJ(n)� J�(n)j = O �P s�k�Æ2� (5.11)for some Æ2 > 0. Then by indu
ting on s and using a 
omputational lemmaabout the Gamma fun
tion, one arrives at the following formula:J(n) = ��1 + 1k�s �� sk��1N sk�1 +O �N s�1k �1� (5.12)for s � 2.To estimate the sum S(N;P �), we begin by 
ompleting the series toin�nity and show that this introdu
es only a small error. If we letS(n) = 1Xq=1 An(q);where An(q) = X1�a�q(a;q)=1�S(q; a)q �s e��naq � ;then there is some Æ3 > 0 su
h thatjS(n) �S(n; P �)j = O �P�Æ3� : (5.13)The series S(n) is 
alled the singular series. We may now apply Weyl'sinequality (Lemma 5.1) to make the estimateS(q; a) = O �q1� 1K+�� ;49



from whi
h we dedu
e that An(q) = O �q�1�Æ4� (5.14)for some Æ4 > 0. The singular series S(n) thus 
onverges absolutely and uni-formly with respe
t to n. We 
on
lude that there is a 
onstant 
2 (dependingonly on k and s) su
h that jS(n)j < 
2 (5.15)for all positive integers n.Bounding the singular series from below is a bit more 
ompli
ated. The�rst step is to show that the fun
tion An(q) is multipli
ative; i.e. for q and rrelatively prime, An(q)An(r) = An(qr). This property allows us to limit our
al
ulations to the 
ase when q is a power of a prime number. If we de�ne�n(p) = 1 + 1Xh=1 An �ph� ;it is possible to show that �n(p) = limh!1 Mn(ph)ph(s�1) ; (5.16)where Mn(q) is the number of solutions to the 
ongruen
exk1 + � � � + xks � n (mod q) (5.17)with the xi integers in [1; q℄.The next step is to expand S(n) as an \Euler produ
t,"S(n) = Yp prime�n(p): (5.18)From equation (5.16) we dedu
e that S(n) is a positive real number, andfrom the bound (5.14) it follows that there exists some p0 su
h that12 � Yp>p0 �n(p) � 32for all n � 1. It therefore suÆ
es to show that �n(p) is positive for all p � p0.This result follows from equation (5.16) and the fa
t that when q = p
 , thereis always a solution to the 
ongruen
e (5.17) with the xi not all divisible byp. We 
on
lude that there is some 
1 su
h thatS(n) � 
1 > 0 (5.19)for all positive integers n.We now have all the tools to bound the major ar
s term in equation (5.3).50



Proposition 5.6. For s � 2k + 1, there exists some � > 0 su
h thatZM pk(�)se (�n�) d� = S(n)��1 + 1k�s �� sk��1N sk�1 +O �N sk�1��� :Proof. By Lemma 5.5,ZM pk(�)se (�n�) d� = S(n; P �)J�(n) +O �P s�k�Æ1� :By equations (5.13) and (5.11), the �rst term is equal to�S(n) +O �P�Æ3�� �J(n) +O �P s�k�Æ2�� :By equation (5.12) and the fa
t that P = �N1=k�, J(n) = O �P s�k�. Multi-plying out the produ
t and 
ombining error terms yieldsZM pk(�)se (�n�) d� = S(n)J(n) +O �P s�k��0� ;where we have used the bound (5.15) to in
orporate the produ
t of S(n)and the error in J(n) into the overall error term. Substituting the formula inequation (5.12) and on
e more applying the bound (5.15) gives the result.5.4 Con
lusionsWe now 
ombine all of the above results to prove the Hardy-Littlewoodasymptoti
 formula for rk;s(n).Proof of Theorem 3. From equation (5.1), we haverk;s(n) = Z 10 pk(�)se (�n�) d�:By 
onstru
tion of the major ar
s M and the minor ar
s m, this expressionsplits into two integrals,rk;s(n) = ZM pk(�)se (�n�) d�+ Zm pk(�)se (�n�) d�:By Proposition 5.4,Zm pk(�)se (�n�) d� = O �n sk�1��1� ;51



and by Proposition 5.6,ZM pk(�)se (�n�) d� = S(n)��1 + 1k�s �� sk��1N sk�1 +O �N sk�1��2� :Combining the error terms and noting that S(n) is bounded above and belowby 
onstants depending only on k and s gives the result.As a parting remark, we note that when k = 2 and s � 5, Theorem 3gives r2;s(n) = Æ0s(n) + h0s(n); (5.20)where Æ0s(n) = O �ns=2�1� and h0s(n) = O �ns=2�1���. This result is a dire
t
orollary of Theorem 1.Ea
h of the two treatments of the problem for sums of squares has itsadvantages. The Hardy-Littlewood 
ir
le method allows us to derive bothan upper and a lower bound for the fun
tion Æ0s(n) in equation (5.20), soÆ0s(n) is truly an asymptoti
 approximation to rk;s(n). With modular formswe did not derive a lower bound, so Theorem 1 allows for the possibility thatthe so-
alled \error term" hs(n) may dominate for some large values of n.On the other hand, the 
ir
le method gives a 
onsiderably worse bound forthe error term h0s(n) than the O �ns=4� of Theorem 1. In addition, the 
ir
lemethod 
an only provide approximations to rk;s(n), and even for the 
asek = 2 we 
annot use it to derive any formulae analogous to those in Theorem2.Referen
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