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Appliations of Modular FormsDavid S FreemanEmmanuel Collegedsf27�am.a.uk15 May 20031 IntrodutionIn the same volume of Diophantus in whih he sribbled the enigmati om-ment that beame known as the Last Theorem, Pierre Fermat also wrote,I have disovered a most beautiful theorem...every number is a squareor the sum of two, three or four squares... The theorem is based onthe most diverse and abstruse mysteries of numbers, but I am not ableto inlude the proof here...1More than a hundred years later, in 1770, Lagrange gave the proof thatFermat omitted, showing that any natural number an be expressed as thesum of four squares. Given this result, a natural question to ask is howmany ways a given number an be represented by a sum of four squares.This problem was solved by Jaobi in 1829, who gave a onise formula forthe number of representations.If we denote by rs(n) the number of representations of n as a sum ofs squares, then Jaobi's formula gives r4(n). Subsequent mathematiiansadapted Jaobi's result to sums of other numbers of squares and by 1907 hadgiven formulae for s = 3 and every even integer through 12. In 1916, Ra-manujan observed that it is possible to ompute a very good approximationto rs(n) that holds for all s. The main goal of this essay is to explain andprove this assertion, whih takes the form of the following theorem.1Cit. and trans. in [N, p. 3℄ 1



Theorem 1. For any nonnegative integer n and positive integer s, let rs(n)be the number of solutions in the integers to the equationx21 + : : :+ x2s = n:Then for s � 4, rs(n) = Æs(n) + hs(n);where Æs(n) = O �ns=2�1� and hs(n) = O �ns=4�.In partiular, Æs(n) is a very good approximation to rs(n) for large n. Forgeneral s the formulae for Æs(n) and hs(n) are hard to work with, but wean simplify them in a few spei� ases. When s is a multiple of 4 we anompute a simple formula for Æs(n) in terms the divisors of n, and when sis 4 or 8 the term hs(n) is identially zero. Combining these results gives usexpliit formulae for the number of representations of n as a sum of four oreight squares.Theorem 2. Let rs(n) be de�ned as in Theorem 1. Thenr4(n) = 8>>><>>>: 8Xdjn d for n odd24 Xdjnd oddd for n even,and r8(n) = 16Xdjn (�1)n�dd3:Jaobi proved the formula for r4(n) using theta funtions, whih are atype of modular form. The proof of the more general theorem builds onthe same ideas and relies on the theory of modular forms. In Setion 2 weshow that the number of ways a number an be represented as the sum of ssquares is given by the Fourier oeÆients of a ertain theta funtion, and wedemonstrate that this funtion is in fat a modular form. In Setion 3, we usea type of modular form alled Eisenstein series to derive an expliit formulafor the portion of the theta funtion that does not vanish on all usps. Afterthis is done what remains of the original theta funtion is a usp form. InSetion 4, we show that the Fourier oeÆients of this usp form are not toolarge, so that in the limit as n goes to in�nity the ontribution of the uspform is negligible. We also disuss methods of improving the bound on hs(n)2



in Theorem 1, whih involves estimating the Fourier oeÆients of a type ofusp form alled Poinar�e series.One might ask whether Theorem 1 generalises to sums of ubes and higherpowers. The answer is yes, but the funtions involved are not modular forms,and thus a ompletely di�erent method of proof is neessary. The \irlemethod" devised by Hardy and Littlewood in the early 1920s provides themahinery to ompute an asymptoti formula for sums of higher powers thatis analogous to Theorem 1. In Setion 5 we desribe how this method givesthe result for sums of kth powers and we show that the more general theoremagrees with Theorem 1 when k = 2. Unfortunately, the Hardy-Littlewoodmethod does not allow us to ompute any formulae analogous to those inTheorem 2.2 Theta FuntionsOur approah to ounting representations of sums of squares begins by ex-amining the properties of theta funtions. The exposition in this setion(loosely) follows that of Sarnak [S2, x1.3℄. Further details, espeially withregard to Proposition 2.4, an be found in [I, x10℄. Iwanie treats a very gen-eral lass of theta funtions; where neessary we have speialised his resultsto the ases in whih we are interested.We begin by de�ning the n-dimensional analogue of the lassial thetafuntion.De�nition. Let H denote the upper half-plane of C . For any positive integern, let �n(z) = Xm2Zn e�ijmj2z (2.1)for any z 2 H .This series onverges absolutely for all z 2 H . It is lear from the de�ni-tion that �n(2z) has a Fourier series,�n(2z) = 1Xm=�1 ame2�imz: (2.2)Sine eah vetor inZn of length pm ontributes 1 to am, the series (2.2) hasthe property the Fourier oeÆients am are exatly the number of represen-tations of m as the sum of n squares. If we let �n(z) = �n(2z) and show that3



�n(z) is a modular form for a ertain ongruene subgroup of SL2(Z), thenwe an use the theory of modular forms to analyse the Fourier oeÆientsam.The key property of modular forms is how they transform under theation of subgroups of SL2(Z). For example, a modular form f(z) of weightk (k a positive even integer) for SL2(Z) transforms asf(z) = (z + d)kf(z) (2.3)for  = ( a b d ) 2 SL2(Z). We therefore wish to disover transformation prop-erties of the funtions �n(z), with the goal of showing that these funtionsare modular forms. We �rst observe that�n(z) = �1(z)n: (2.4)This observation allows us to fous our attention on the transformation prop-erties of �1(z). The simplest of these properties is lear from the de�nition:�1(z + 2) = �1(z): (2.5)Next we use the Poisson summation formula to derive a slightly moreompliated transformation property. The formula is as follows.Result 2.1 (Poisson summation formula; f. [I, x1.1℄). Let f : R! Cbe a C1 funtion, and let̂f(y) = Z 1�1 f(x)e�2�ixydx:Suppose that for any N � 0, jf(x)j and jf̂(x)j are both less than C � jxj�Nfor some C (depending on N). Then1Xm=�1 f(m) = 1Xm=�1 f̂(m):We will also need the Fourier transform of the Gaussian funtion.Lemma 2.2. For x 2 R and �xed onstants  2 R and � 2 C n f0g, letf(x) = e���(x+)2 and de�ne f̂(y) as in Result 2.1. Thenf̂ (y) = 1p�e2�iy��y2=�:4



(Here and throughout this essay, p� denotes the prinipal branh of thesquare root, with argpz 2 (��=2; �=2℄. For k a half integer, we de�nezk = (pz)2k.)Proof. K�orner [K�o, Lemma 50.2℄ omputes1p2� Z 1�1 e�i�te�t2=2dt = e��2=2:Making the hanges of variable t = (x + )p2��, � = yp2�=� gives theresult.We ombine these two results to dedue a transformation property of thetheta funtion.Proposition 2.3. �1 (�1=z) = p�iz�1(z):Proof. Let � = i=z and  = 0 in Lemma 2.2. Then we havef(x) = e�i�x2=zf̂(x) = rzi ei�x2z;and thus by the de�nition of �n (equation (2.1)) and the Poisson summationformula (Result 2.1), we have�1 (�1=z) = 1Xx=�1 f(x) = 1Xx=�1 f̂(x) = p�iz�1(z):In priniple, equation (2.5) and Proposition 2.3 allow us to ompute thetransformation of �1 under the group �� � SL2(Z) generated by ( 1 20 1 ) and( 0 �11 0 ). However, the omputations are bulky, and we desire a more expliitformula. If we onsider the ation of the slightly smaller group �(2) � ��,2where �2 = � 2 SL2(Z) :  � �1 00 1� (mod 2)� ;then we may derive the following transformation property:2Gunning [G, x5℄ shows that [SL2(Z) : ��℄ = 3 and [�� : �(2)℄ = 2.5



Proposition 2.4. Let  = ( a b d ) 2 �(2) (i.e. a � d � 1 (mod 2) andb �  � 0 (mod 2)). Then�n(z) = �2d �n ��nd (z + d)n=2 �n(z);where � d� is the Jaobi-Legendre quadrati residue symbol for positive odd d(see [W℄) extended to all odd d by� d� = jj � �d� if  6= 0;�0d� = � 1 if d = �10 otherwise;and �q = � 1 if q � 1 (mod 4)i if q � 3 (mod 4) :Proof. To simplify notation, we de�ne e (z) = e2�iz. We start by usingad� b = 1 to rewrite z asz = az + bz + d = �a � 1(z + d)� :Then we have �1(z) = 1Xm=�1 e�m22 �a � 1(z + d)�� : (2.6)Sine  � 0 (mod 2),e�a(m+ x)22 � = e�am22 + amx+ ax22 � = e�am22 �for any x 2 Z, and thus e(am22 ) depends only on m modulo . We antherefore rewrite (2.6) as�1(z) = Xg (mod )0BB�e�ag22 � Xm2Zm�g (mod ) e�m22 � �1(z + d)��1CCA= Xg (mod ) e�ag22 �Xm2Ze�12 �g +m�2� �z + d��! :6



We an apply the Poisson summation formula (Result 2.1) to replae theterm in the inner sum by its Fourier transform (see Lemma 2.2), whih gives�1(z) = Xg (mod ) e�ag22 �Xm2Zrz + di e�m22 �z + d �+ gm �! :Splitting m into its ongruene lasses modulo , we obtain�1(z) =rz + di Xg (mod ) Xl (mod ) e�ag22 + gl + dl22 �Xm2Ze�12zm2� :Sine (; d) = 1, we an substitute l0 = l � dg and still be summing overall ongruene lasses modulo . Making this substitution (and applyingad� b = 1) gives�1(z) = rz + di �1(z) Xg (mod ) Xl0 (mod ) e�ag22 + bgl+ 12bdl2�= rz + di �1(z) Xg (mod ) e�ag22 � ;sine all of the variables are integers and b � 0 (mod 2). Again sine(; d) = 1, we an make the substitution g = dx and still be summing overall ongruene lasses modulo . Thus the term ag2=2 beomes ad2x2=2 =bdx2=2 + dx2=2. Sine b � 0 (mod 2), we have�1(z) =rz + di �1(z) Xx (mod ) e�dx22 � : (2.7)The sum in this equation is a Gauss sum; to evaluate it, we wish to usethe following formula:Result 2.5 ([I, Lemma 4.8℄). Let p; q be integers with (2p; q) = 1 andq � 0. Then Xt (mod q) e�pt2q � = �pq� �qpq;where (pq ) and �q are de�ned as in Proposition 2.4.The sum in equation (2.7) does not satisfy the hypotheses of the Result2.5, so we must manipulate the expression a bit. The key observation at7



this stage is that we now have two ways of using equation (2.7) to evaluatethe expression �1((�1=z)), namely, substituting �1=z for z and applyingProposition 2.3, and substituting  0 =  ( 0 �11 0 ) = � b �ad � � for . Making thesesubstitutions gives the following identity:rdz � id �1(z)g(�; d) = r�=z + di �1(�1=z)g(d; )= r� dz �1(z)g(d; );where g(p; q) = Xx (mod q) e�px22q � :It follows that g(d; ) =rid g(; d):By assumption, d is an odd integer, so we may substitute 2x for x in theexpression for g on the right hand side, whih givesg(d; ) =rid Xx (mod d) e��2xt2d � : (2.8)The right hand side of equation (2.8) satis�es the hypotheses of Lemma 2.5,so we onlude that g(d; ) = pi�2d � �d:Substituting this expression into equation (2.7) gives�1(z) = pz + d�2d � ��1d :Taking the nth power of both sides proves the proposition (f. equation (2.4)).As we observed above, the funtion whose Fourier oeÆients ount repre-sentations as sums of squares is not �n(z) but rather �n(z), whih we de�nedto be equal to �n(2z). We may dedue the transformation property of �n(z)from Proposition 2.4.Corollary 2.6. Let  = ( a b d ) 2 �0(4) (i.e.  � 0 (mod 4)). Then�n(z) = � d�n ��nd (z + d)n=2�n(z): (2.9)8



Proof. By de�nition of �n(z),�n(z) = �n(2z) = �n� a(2z) + 2b(=2)(2z) + d� = �n ( 0(2z)) ;where  0 = � a 2b=2 d �. Sine 4j,  0 2 �(2), and we may apply Proposition 2.4to dedue the result.Note that for n divisible by 4, Corollary 2.6 gives�n(z) = (z + d)n=2�n(z);whih is the familiar transformation property for modular forms of evenweight (f. equation (2.3)).A funtion that satis�es the transformation property given in equation(2.9) for a subgroup � � �0(4) is said to be a modular funtion of weight n=2for �. However, this transformation property is not enough to make �n(z) amodular form; we also need to examine the funtion's behaviour at the uspsof �0(4).A modular form of even weight for SL2(Z) is said to be holomorphi at 1if it has a Fourier expansion P ane2�inz and an = 0 for all n < 0. In a moregeneral ongruene subgroup � � SL2(Z) there may be multiple usps, eahorresponding to an equivalene lass of s 2 Q [ f1g under the ation of �.To de�ne holomorphiity at a usp other than in�nity, we make a hange ofvariables that moves the usp to in�nity and divide out by the automorphyfator.De�nition. Let � � SL2(Z), and let f : H ! C be a modular funtion ofweight k for �. Given s 2 Q [ f1g, hoose Æ = ( a b d ) 2 SL2(Q) suh thats = Æ(1). Let w = Æ�1z be the loal variable at s and de�ne f j[Æ℄k : H ! C(read \f hit by delta") byf j[Æ℄k (w) = f(Æw)(w + d)�k:We say f is holomorphi at the usp s if there is some positive integer Msuh that f j[Æ℄k (w) = 1Xn=�1 ane2�inw=M ;and an = 0 for all n < 0. The oeÆient a0 = f j[Æ℄k (1) is the value of fat the usp s. 9



In general, the oeÆients in the Fourier expansion, and therefore thevalues at the usps, will depend on the hoie of loal variable w. Ations ofsuessive hanges of variable behave niely (see for example [K, PropositionIII.16℄), but we will not need suh results. Our aim now is to show that thefuntion �n(z) is holomorphi at the usps of �0(4). To do so we need to�nd out what these usps are; it turns out that there are three equivalenelasses.Lemma 2.7. Let s 2 Q. Write s = p=q, where (p; q) = 1. Then s is�0(4)-equivalent to one of the following:1. 1, if 4jq;2. 0, if q is odd; or3. 1=2, if q � 2 (mod 4).Moreover, no two of 1, 0, and 1=2 are �0(4)-equivalent.Proof. Sine (p; q) = 1, we may hoose integers a; b suh that ap+ bq = 1.1. Suppose 4jq. Let  = � a b�q p �. Then  2 �0(4) and  (p=q) =1.2. Suppose q is odd. By replaing a with a+kq and b with b�kp (for somek) if neessary, we may assume that a � 0 (mod 4). Let  = � q �pa b �.Then  2 �0(4) and  (p=q) = 0.3. Suppose q � 2 (mod 4). Then a is odd. By replaing a with a + qand b with b � p if neessary, we may assume a � 1 (mod 4). Let = � a b2a�q p+2b �. Then  2 �0(4) and  (p=q) = 1=2.It remains to show that 1, 0, and 1=2 are all inequivalent. Any matrix 2 SL2(Z) that takes p=q to1 must be of the form  = � a b�q p �, so if 4 doesnot divide q then  62 �0(4); thus 0 (= 0=1) and 1=2 are not equivalent to1. Similarly, any  2 SL2(Z) that takes p=q to 0 is of the form  = � q �pa b �,so if q is even then a must be odd and thus  62 �0(4). We onlude that 1=2is not equivalent to 0.We an now show that �n(z) is holomorphi at all three usps, and in fatalulate its value at eah. We will use these values in Setion 3 to expresstheta series in terms of Eisenstein series.10



Proposition 2.8. For any positive integer n, �n(z) is holomorphi at allusps of �0(4). Furthermore, the values at the usps are1. �n(1) = 1,2. �n ����h� 0 � 122 0 �in=2 (1) = i�n=2, and3. �n ���[( 1 02 1 )℄n=2 (1) = 0.Proof. By Lemma 2.7, it suÆes to show that �n(z) is holomorphi at 1,0, and 1=2, and by equation (2.4) we need only onsider �1(z). It is learfrom the de�nition that �1(z) is holomorphi at 1, sine�1(z) = 1Xm=�1 e2�im2z = 1 + 2 1Xm=1 e2�im2z:The onstant term is 1, so �1(1) = �n(1) = 1:Let Æ = � 0 � 122 0 �, and note that Æ(1) = 0. Then in the loal variable atzero, �1 ���[Æ℄1=2 (w) = (2w)�1=2�1�� 14w�= (2w)�1=2�1�� 12w� :Applying Proposition 2.3 gives�1 ���[Æ℄1=2 (w) = p�i�1(2w) = p�i�1(w):Applying the de�nition as we did above at in�nity, we see that �1 is holo-morphi at zero and �1 ���[Æ℄1=2 (1) = i�1=2:Taking the nth power gives�n ���[Æ℄n=2 (1) = i�n=2:To evaluate �n(z) at the usp 1=2 we will need the following lemma.11



Lemma 2.9. �1(z � 1) = 2�1(4z)� �1(z).Proof. From the de�nition,�1(z � 1) = 1Xm=�1 e�im2ze��im2= Xm even e�im2z � Xm odd e�im2z= 2 Xm even e�im2z � 1Xm=�1 e�im2z= 2 �1(4z)� �1(z):Now let Æ = ( 1 02 1 ), and note that Æ(1) = 12 . Then�1 ���[Æ℄1=2 (w) = (2w + 1)�1=2�1� w2w + 1�= (2w + 1)�1=2�1� 2w2w + 1� :Applying Proposition 2.3, Lemma 2.9, and Proposition 2.3 again gives�1 ���[Æ℄1=2 (w) = (2w + 1)�1=2s�i��1� 12w� �1��1� 12w�= r i2w �2 �1�� 2w�� �1�� 12w��= r i2w  2r�iw2 �1 �w2 ��p�2iw �1 (2w)!= �1(w=4) ��1(w): (2.10)From this last expression we see that �1(z) is holomorphi at 1=2. Theleading oeÆients anel, giving�1 ���[Æ℄1=2 (1) = �n ���[Æ℄n=2 (1) = 0:We have now shown that �n(z) is a modular form of weight n=2 for �0(4)aording to the following de�nition:12



De�nition. Let n be a positive integer, and let  = ( a b d ) 2 �0(4) (i.e.ad� b = 1 and 4j). De�ne the automorphy fator j(; z) byj(; z) = � d� ��1d pz + d; (2.11)where � d� and �d are de�ned as in Proposition 2.4. Let k be half a positiveinteger. Then a modular form f(z) of weight k for �0(4) is a holomorphifuntion f : H ! C satisfying1. f(z) = j(; z)2kf(z) for any  2 �0(4),2. f(z) is holomorphi at eah usp of �0(4).If f is a modular form that vanishes at all usps of �0(4), then f is a a uspform.Sine � d� �d is a fourth root of unity, when k is an even integer this def-inition agrees with the usual de�nition of modular forms of even weight fora ongruene subgroup � � SL2(Z). This de�nition in the same form anbe used to de�ne modular forms for half-integer weight for any subgroup� � �0(4) of �nite index. For half-integer weight forms for a general dis-rete subgroup � � SL2(R), the fator � d� �d is replaed by a more general\multiplier system"; for details, see [I℄.It is lear from the de�nition that the spae of modular forms of weightk for �0(4) is a vetor spae over C . In fat, this spae is �nite dimensional.Proposition 2.10. Let Mk(�0(4)) denote the spae of modular forms ofweight k for �0(4). Then dim(Mk(�0(4))) <1.Proof. We �rst observe that given k and l, for f 2 Mk(�0(4)) and g 2Ml(�0(4)), fg 2 Mk+l(�0(4)). Choose some nonzero f0 2 Mk(�0(4)). Thenthe map f 7! (f0)23f is an injetion fromMk(�0(4)) intoM24k(�0(4)). Sinek is a half integer it therefore suÆes to show the result for 12jk.Let q = e2�iz, and de�ne�(q) = q 1Yn=1(1� qn)24:It is well known (see e.g. [S2, Appendix 1.1℄) that � is a modular formof weight 12 for SL2(Z), and thus also for any ongruene subgroup � �13



SL2(Z). It is lear from the de�nition that � vanishes at 1, and thus � isa usp form for any � � SL2(Z). In addition, � is nonzero everywhere onH . Suppose 12jk, and let f be a modular form of weight k for �0(4). For eahusp s of �0(4), hoose Æ 2 SL2(Q) suh that Æs = 1, and let the Fourierexpansion of f at the usp s bef j[Æ℄k (w) = an(s)e2�inw:Suppose that for eah s, an(s) = 0 for all n < hsk=12, where hs is the orderof the zero of � at the usp s. Then the funtion f ���k=12 is holomorphion H and at all usps, and thereforef ���k=12 2 M0(�0(4)) = C ;so f =  � �k=12 for some  2 C . Let N = Ps hs and de�ne a linear map : Mk(�0(4)) ! C N that sends a modular form f to the vetor onsistingof its �rst hsk=12 Fourier oeÆients at eah usp. Then ker( ) = C ��k=12,and we onlude thatdim(Mk(�0(4))) � 1 + k12Xs hs (2.12)< 1:For even k � 2, one an use the Riemann-Roh Theorem (see [Mi, The-orem 4.9℄) to alulate an expliit formula for the dimension of the spae ofmodular forms of weight k. We will need this result to prove the expliitformulae in Theorem 2. (In the spei� ases we onsider the dimension anbe omputed by more elementary means; see Proposition 3.10 below.) Toprove the order of magnitude estimates in Theorem 1, all we need is that thespae of modular forms is �nite dimensional.3 Eisenstein SeriesAn important example of modular forms of half-integer weight is the set ofEisenstein series. Eisenstein series are always non-uspidal modular forms(i.e. the onstant term in the Fourier expansion is nonzero), and it turns outthat they span the spae of non-uspidal modular forms. This is useful for14



our appliation to representations of integers as sums of squares beause (aswe will see in Setion 4 below) the Fourier oeÆients of usp forms are ofstritly smaller order than those for Eisenstein series, and thus the FourieroeÆients of the theta funtion are dominated by those for the Eisensteinseries.In this setion we de�ne the Eisenstein series for �0(4), show they aremodular forms with appropriate behaviour at eah usp of �0(4), and alu-late their Fourier oeÆients. The formulae simplify niely for the series ofeven integer weight, while for the other series we an dedue only an order ofmagnitude estimate. Our exposition of the Eisenstein series and demonstra-tion of their properties follows that of Sarnak [S2, x1.4℄, while the alulationof the Fourier oeÆients follows Koblitz [K, xIII.3 and IV.2℄.We begin by realling the standard de�nition of Eisenstein series for eveninteger weight k: Ek(z) = 12�(k) Xm;n2Z(m;n)6=(0;0) 1(mz + n)k ;where �(k) is the Riemann zeta funtion. We may rewrite this sum (see [K,xIII.2℄) as Ek(z) = Xm�0(m;n)=1 1(mz + n)k ;and note that this is a sum of j(; z)�2k over matries  of the form ( � �m n ). Weinterpret this set of matries as oset representatives of �1nSL2(Z), where�1 = �� 1 j0 1 � ; j 2Z	 is the stabiliser of 1 in SL2(Z). We are now preparedto generalise the de�nition.De�nition. Let k > 2 be a half integer, and s 2 Q [ f1g. Choose Æ 2SL2(Q) suh that Æs = 1. The Eisenstein series of weight k at the usp sfor �0(4) is E(s)k (Æz) = X2�1n�0(4) j(; Æz)�2k;where the automorphy fator j is de�ned by equation (2.11).If we hoose oset representatives for �1n�0(4) of the form ( � � d ) with4j and keep only one of eah pair f(; d); (�;�d)g, then we may write the15



series at in�nity asE(1)k (z) = X4j; d>0(;d)=1 � d��2k �2kd (z + d)�k : (3.1)The series E(1)k onverges absolutely for k > 2 sine���E(1)k (z)��� � X4j; d>0(;d)=1 jz + dj�k � X;d2Z(;d)6=(0;0) jz + dj�k ;and the last sum onverges absolutely for k > 2. By the same reasoning, E(s)konverges absolutely for k > 2 and any s 2 Q.It is straightforward to hek that the Eisenstein series satisfy the trans-formation property of modular forms. We require a simple lemma.Lemma 3.1. The automorphy fator j(; z) satis�esj(��; z) = j(�; �z) � j(�; z)for any �; � 2 �0(4).Proof. For any funtion f we havef(��z)f(z) = f(��z)f(�z) � f(�z)f(z)Using �1(z) as our funtion f and applying the transformation property inCorollary 2.6 gives the result.We use this lemma to show that eah Eisenstein series transforms like amodular form.Proposition 3.2. Let k be a half integer greater than 2, let s 2 Q [ f1g,and hoose Æ 2 SL2(Z) suh that Æs =1. Then for any � 2 �0(4),E(s)k (�Æz) = j(�; Æz)2kE(s)k (Æz):Proof. By the de�nition,E(s)k (�Æz) = X2�1n�0(4) j(; �Æz)�2k;16



and by Lemma 3.1,E(s)k (�Æz) = X2�1n�0(4)� j(�; Æz)j(�; Æz)�2k :However, right multipliation by � just permutes the osets of �1n�0(4),whih does not hange the value of the sum sine we have absolute onver-gene. We may therefore rewrite the sum asE(s)k (�Æz) = j(�; Æz)2k X2�1n�0(4) (j(; Æz))�2k ;giving the result.The above result shows that for a given hoie of loal variable w = Æz,the Eisenstein series at two equivalent usps s; s0 are idential, so we anrefer to \the Eisenstein series at s," meaning the series at all usps that are�0(4)-equivalent to s. We now investigate the behaviour at the usps of theEisenstein series, whih will allow us to rewrite the theta funtion in termsof Eisenstein series and usp forms.Proposition 3.3. Let w = Æz be a loal variable at a usp s of �0(4), andlet E(s)k (w) be the Eisenstein series of weight k (k > 2 a half integer) at s.Then E(s)k (1) = 1, and E(s)k (s0) = 0 for any usp s0 not �0(4)-equivalent tos.Proof. We arry out the alulations for the series at in�nity; those for theother series are idential.The only term in the sum de�ning the Eisenstein series that does not goto zero as z goes to in�nity is that orresponding to the identity in �1n�0(4),or (; d) = (0; 1) in the notation of equation (3.1). Splitting this term out ofthe sum gives E(1)k (z) = 1 + X>0;4j(;d)=1� d��2k �2kd (z + d)�k :Taking absolute values and adding terms where we have omitted values of and d gives ���E(1)k (z)� 1��� � 2 1X=1 1Xd=1 jz + dj�k :17



Let z = iy for y 2 R; y > 0. By omparison with a double integral in thevariables  and d, we see that for k > 2 there is some onstant C > 0 suhthat ���E(1)k (iy)� 1��� � Cyk�2 :As y goes to in�nity the right hand side goes to zero, so E(1)k (1) = 1.For the usp at zero, we use Æ = ( 0 �11 0 ) to hange to the loal variablew = �1=z: E(1)k j[Æ℄k (w) = w�kE(1)k (�1=w)= X4j; d>0(;d)=1 � d��2k �2kd (dw + )�k :Sine d is odd, all the terms go to zero as w goes to in�nity. We thus have���E(1)k j[Æ℄k (w)��� � 2 1X=0 1Xd=1 jdw + j�k ;and sine k > 2, as w goes to in�nity this sum goes to zero by the samereasoning as above.Finally, using Æ = ( 1 02 1 ) to hange to the loal variable at 12 givesE(1)k j[Æ℄k (w) = (2w + 1)�kE(1)k � w2w + 1�= X4j; d>0(;d)=1 � d��2k �2kd ((+ 2d)w + d)�k :Sine (; d) = 1, all terms go to zero as w goes to in�nity, and thus the sumgoes to zero by the same reasoning as in the previous two ases.Taken together, Propositions 3.2 and 3.3 imply that the Eisenstein seriesare modular forms. Furthermore, sine eah series is nonzero at a di�erentusp, we an write any modular form as a linear ombination of Eisensteinseries plus a form that vanishes at all usps. We now arry out this alulationfor �n(z). To simplify notation, we will assume that the Eisenstein series atzero is de�ned in the variable w = �1=4z, and we will denote by E(0)k (z) thefuntion E(0)k ���h� 0 � 122 0 �ik (z). 18



Corollary 3.4. For any positive integer n > 4,�n(z) = E(1)n=2 (z) + i�n=2E(0)n=2(z) + Fn=2(z);where Fn=2(z) is a usp form of weight n=2 for �0(4).Proof. By Propositions 2.8 and 3.3, the funtionFn=2(z) = �n(z)� E(1)n=2 (z)� i�n=2E(0)n=2(z)vanishes on all three usps of �0(4). By linearity of modular forms, Fn=2(z)is a modular form of weight n=2, and thus a usp form.We now wish to alulate the Fourier oeÆients of the non-uspidalpart of �n(z). In general, the Legendre symbol and �d in the de�nition ofthe Eisenstein series makes it impossible to ompute a simple expression;however, we an make an order-of-magnitude estimate. We ompute theoeÆients for eah of the two Eisenstein series separately.Proposition 3.5. Let E(1)k (z) and E(0)k (z) be the Eisenstein series of weightk > 2 at 1 and 0, respetively, for �0(4). ThenE(1)k (z) = 1 + 1Xl=1 ale2�ilz;E(0)k (z) = 1Xl=1 ble2�ilz;where al = (�2�i)k(k � 1)! lk�1Xn>04jn n�k X0�j<n(j;n)=1�nj ��2k �2kj e2�ilj=n; (3.2)bl = (��i)k(k � 1)! lk�1 Xn>0 oddn�k�2kn X0�j<n(j;n)=1� jn��2k e�2�ilj=n: (3.3)Proof. From the de�nition of the Eisenstein series (hoosing the pair off(; d); (�;�d)g with  > 0), we haveE(1)k (z) = 1 + X4j; >0(;d)=1 � d��2k �2kd (z + d)�k : (3.4)19



Sine the sum is absolutely onvergent for k > 2, we may group terms for agiven  by the value of d modulo :E(1)k (z) = 1 +X>04j X0�j<(j;)=1 1Xh=�1� j + h��2k �2kj+h(z + j + h)�k:We now observe that sine  is divisible by 4, �j+h and � j+h� are indepen-dent of h. (For the latter we appeal to the multipliative and reiproityproperties of the Jaobi symbol, whih an be found in [W℄.) We now haveE(1)k (z) = 1 +X>04j �k X0�j<(j;)=1�j��2k �2kj 1Xh=�1�z + j + h��k :To evaluate the innermost sum, we use to a formula that an be derived fromthe series expansion of the otangent:Result 3.6 ([I, eq. (1.46)℄). For z 2 H and k � 2 an integer,1Xa=�1(z + a)�k = (�2�i)k(k � 1)! 1Xl=1 lk�1e2�ilz:Applying this result to expression for E(1)k (z) givesE(1)k (z) = 1 +X>04j �k X0�j<(j;)=1�j��2k �2kj (�2�i)k(k � 1)! 1Xl=1 lk�1e2�ilze2�ilj=:Bringing the onstant and the fator lk�1e2�ilz to the outside and replaing with n gives the result.To begin the analogous omputation for the Eisenstein series at zero,reall that we de�ned the series in the variable w = �1=4z:E(0)k (w) = X4j;d>0(;d)=1� d��2k �2kd (w + d)�k:Hitting with Æ = � 0 � 122 0 � to hange bak to the variable z (i.e. the loal20



variable at in�nity) givesE(0)k (z) = (2z)�k X4j;d>0(;d)=1� d��2k �2kd �� 4z + d��k= 2�k X4j;d>0(;d)=1� d��2k �2kd �dz � 4��k :We now let  = 4m and note that (4m;d) = 1 if and only if d is odd and(m;d) = 1. Furthermore, sine �4d� = 1 for all d, � d� = �md �. We thus haveE(0)k (z) = 2�k Xd>0 odd(m;d)=1 �md ��2k �2kd (dz �m)�k : (3.5)As above, we group terms, this time for eah d grouping by the value of mmodulo d,E(0)k (z) = 2�k Xd>0 odd �2kd X0�j<d(j;d)=1 1Xh=�1�j + dhd ��2k �2kd (dz � j + dh)�k= 2�k Xd>0 oddd�k�2kd X0�j<d(j;d)=1�jd��2k 1Xh=�1�z � jd + h��k :Applying Result 3.6 givesE(0)k (z) = 2�k Xd>0 odd d�k�2kd X0�j<d(j;d)=1�jd��2k (�2�i)k(k � 1)! 1Xl=1 lk�1e2�ilze�2�ilj=d:Bringing the onstant and the fator lk�1e2�ilz to the outside and replaingd with n gives the result.We now wish to bound the growth of the Fourier oeÆients that we havejust alulated, so that we may get an order of magnitude estimate for �n(z).This task is a straightforward orollary of the above result.Corollary 3.7. Let al and bl be de�ned as in Proposition 3.5 above. Thenfor k > 2 there exist positive real numbers Ca, Cb suh that for any l > 0,jalj � Calk�1jblj � Cblk�121



Proof. The innermost sum in the expression for al in (3.2) has absolutevalue less than n, sine eah term has absolute value 1 and there are fewerthan n terms. Thus jalj � (2�)k(k � 1)! lk�1 1Xn=1 n1�k:The sum onverges for k > 2, giving the result. The proof for bl is analogous.The formulae in Proposition 3.5 are in general the most expliit we analulate for al and bl. However, when k is an even integer, the Legendresymbols and �d all drop out, so we an simplify the result further.Proposition 3.8. Let al and bl be de�ned as in Proposition 3.5. Then fork > 2 an even integer,al = �2k(2k � 1)Bk Xdjll=d even(�1)ddk�1bl = �2k(2k � 1)Bk Xdjll=d odddk�1where Bk are the Bernoulli numbers, de�ned as the oeÆients in the powerseries xex � 1 = 1Xk=0 Bk xkk! : (3.6)Proof. For the oeÆients al, we begin with equation (3.4). We note thatsine k is an even integer, �md ��2k = �2kd = 1. Evaluating at z=2 and letting0 = =2 gives E(1)k �z2� = 1 + X0>0 even(0 ;d)=1 (0z + d)�k:We wish to sum over all pairs (0; d) with 0 even, not just over relativelyprime pairs, so we multiply and divide by the sum over all odd j of j�k:E(1)k �z2� = 1 + Xj>0 odd j�k!�1 Xj>0 odd X0>0 even 1Xd=�1(0;d)=1 (j0z + jd)�k= 1 + 2�k�(k) � 2�k�(k) Xn>0 even 1Xm=�1�nz � 12 +m��k ; (3.7)22



where in the last sum we have let m = (jd+1)=2 and n = j0. We now applyResult 3.6 to dedueE(1)k �z2� = 1 +� 1�(k)(2k � 1)�� (2�i)k(k � 1)!� Xn>0 even 1Xd=1 dk�1e�indze��id:To rewrite the onstant in front of the sum, we use the fat (see [I, eq. (1.42)℄)that for k � 2 an even integer,Bk = � 2k!(2�i)k �(k); (3.8)where Bk are the Bernoulli numbers. From this formula we dedue that� 1�(k)(2k � 1)�� (2�i)k(k � 1)!� = �2k(2k � 1)Bk :Replaing z=2 with z and letting l = nd gives the result.For the oeÆients bl, we begin with equation (3.5) and again note thatsine k is an even integer, �md ��2k = �2kd = 1. This time, we wish to sum overall pairs (m;d) with d odd. We again multiply and divide by the sum overall odd j of j�k:E(0)k (z) = 2�k  Xj>0 odd j�k!�1 Xj>0 odd Xd>0 odd 1Xm=�1(m;d)=1 (jdz � jm)�k= 2�k�(k) � 2�k�(k) Xn>0 odd 1Xm0=�1 (nz �m0)�k ; (3.9)where in the last sum we have let n = jd and m0 = jm. We now apply Result3.6 to dedueE(0)k (z) = � 1�(k)(2k � 1)�� (2�i)k(k � 1)!� Xn>0 odd 1Xd=1 dk�1e2�indz:Applying equation (3.8) shows that the onstant is equal to �2k(2k�1)Bk . Lettingl = nd gives the result.The above results on Eisenstein series are valid for any half-integer weightk > 2. For k = 2 the series onverge only onditionally, so some extra om-pliations arise. There are two ways to approah the onvergene problems.23



The �rst (see [K, xIII.2℄) is to de�ne the Eisenstein series of weight 2 in theusual manner, in whih ase the sums onverge onditionally but do not sat-isfy the right transformation rule. For the series at the usp s in the loalvariable w, we haveE(s)2 (w) = (w + d)2E(s)2 (w) + �s(w);where �s is the \error term." It turns out that the error term is simple enoughso that given any two Eisenstein series, there is some linear ombination forwhih the error terms anel, and thus this linear ombination is a (non-uspidal) modular form of weight 2 for �0(4).The other way to deal with Eisenstein series of weight 2 (see [S2, Remark1.4.4℄) is to introdue the funtionE(s)2 (w; t) = X2�1n�0(4)(w + d)�2 jw + dj�2tand take the limit as t goes to zero. This limit exists and transforms or-retly but is not quite holomorphi. However, the non-holomorphi part isa single term in the Fourier expansion, so we may take any linear ombi-nation that annihilates the non-holomorphi part, whih leaves (as above) atwo-dimensional spae of modular forms of weight 2 that are not usp forms.To extend Corollary 3.4 to the ase n = 4, we require the funtionE(1)2 (z)� E(0)2 (z) to be a modular form of weight 2 for �0(4). Fortunately,this is the ase.Proposition 3.9. Let E�2(z) = E(1)2 (z)� E(0)2 (z):Then E�2(z) is a modular form of weight 2 for �0(4).Proof. From equations (3.7) and (3.9), we haveE�2(z) = 1 + 2�2 1Xn=1 1Xm=�1 1�2nz � 12 +m�2 � 1((2n � 1)z +m)2! (3.10)= 1 + 2�2 1Xn=1 1Xm=�1 (1� 4n)z2 + (2n � 2m)z + (m� 14)�2nz � 12 +m�2 ((2n + 1)z +m)2 :Taking absolute values term by term gives��E�2(z)�� � 1Xn=1 1Xm=�1 A jmj+Bn+ C�4n2 jzj2 + 4mnRe(z) +m2�2 ;24



for some positive onstants A, B, C (depending on z). (Note that we haveabsorbed the non-quadrati terms in the denominator into the onstants.)It is lear from equation (3.10) that E�2(z + 1) = E�2(z), so we may assumewithout loss of generality that jRe(z)j � 1=2. Applying this fat gives��E�2(z)�� � 2max �jzj2 ; jzj�2� 1Xn=1 1Xm=0 Am+Bn+ C(4n2 � 2mn+m2)2 :If we make the substitution u = n, v = m� n, then��E�2(z)�� � 1Xu=1 1Xv=�1 A0u+B 0 jvj+ C 0(3u2 + v2)2� 2 1Xu=1 1Xv=0 A0u+B 0v + C 0(u2 + v2)2 :If we absorb the onstant C 0 into the other two onstants and use the fatthat sine A0, B 0, u, v are all nonnegative,A0u+B 0vpu2 + v2 � min (A0; B 0) ;then we have ��E�2(z)�� � 1Xu=1 1Xv=0 D(u2 + v2)3=2for some positive onstant D. This last sum onverges by omparison withthe integral Z ZR dx dy(x2 + y2)3=2 = � Z 1� drr2 ;where R is the half-plane y > 0 minus a dis around the origin of radius �.Sine the sum (3.10) onverges absolutely for all z, E�2(z) is holomorphion H , and heking holomorphiity at the usps is straightforward. To showthe transformation property, we use the de�nition of Eisenstein series to writeE�2(z) = X2�1n�0(4) j(; z)�4 � z�2j �;�1z��4 :Sine the sum is absolutely onvergent, we may apply the same reasoningas in the proof of Proposition 3.2 to dedue that for � = ( a b d ) 2 �0(4),E�2(�z) = (z + d)2E�2(z). 25



Now that we have absolute onvergene in the Eisenstein series of weight2, we may extend the formulae in Propositions 3.5 and 3.8 to the ase k = 2.The alulations are for the most part idential, and we omit the details; fora full treatment see [Mu, xI.15℄.In general the usp form Fn=2(z) in Corollary 3.4 is nontrivial; however,it vanishes for ertain small values of n, and the theta series is exatly equalto the sum of the two Eisenstein series.Proposition 3.10. For n = 4 or 8, the usp form Fn=2(z) de�ned in Corol-lary 3.4 is identially equal to zero.We give two di�erent proofs. The �rst is omputational, and the seonduses some more powerful results about Riemann surfaes to desribe theresult in terms of dimensions of vetor spaes.Proof No. 1. The �rst proof requires a result about the number of zeroesof a modular funtion f for �0(4), whih may be proved by integrating thelogarithmi derivative of f around the boundary of a fundamental domainfor �0(4). (Milne [Mi, Prop. 4.12℄ uses the Riemann-Roh Theorem to provethe result in greater generality, but we do not need this stronger version.)Result 3.11 ([K, xIII.3, Problem 17℄). Let f(z) be a nonzero modularfuntion of weight k (k � 0 an even integer) for �0(4). Let F be a funda-mental domain for �0(4), inluding the three usps, and for p 2 F denote byvp(f) the order of the zero or pole of f(z) at the point p. ThenXp2F vp(f) = k2 :Sine �4(z) is a modular form (of weight 2), it has no poles in any fun-damental domain F . Furthermore, we have from equation (2.10),�4 j[Æ℄2 (w) = a1e2�iw + higher powers of e2�iw;where Æ = ( 1 02 1 ). Thus �4(z) has a zero of order 1 at the usp 1=2, and byResult 3.11 it has no other zeroes. It follows that �8(z) = �4(z)2 has a zeroof order 2 at the usp 1=2 and no other zeroes or poles.Proposition 3.8 (extended to weight 2 via Proposition 3.9) gives an expliitformula for the Fourier oeÆients of the modular form E(1)n=2 (z)+in=2E(0)n=2(z)for n = 4 or 8. One an easily ompute that the �rst four oeÆients am do26



in fat give the number of representations of m as the sum of four or eightsquares. Thus in both ases the funtion�n(z)�E(1)n=2 (z)� in=2E(0)n=2(z)has a zero of order four at 1. Sine �n(z) has at zero of order n=4 at 1=2and no other zeroes, the funtion (z) = 1 � E(1)n=2 (z)� in=2E(0)n=2(z)�n(z)has a zero of order four at 1, a pole of order n=4 at 1=2, and no other poles.Sine  (z) is a modular funtion of weight zero and has fewer poles thanzeroes, by Result 3.11 it is identially equal to zero. We onlude that�n(z) = E(1)n=2 (z) + in=2E(0)n=2(z);and the usp form Fn=2(z) is identially equal to zero.Proof No. 2. Milne [Mi℄ uses the Riemann-Roh Theorem and the orre-spondene between modular forms of weight k and k=2-fold di�erential formsto derive the following dimension formula:Result 3.12 ([Mi, Theorem 4.9℄). Let k � 2 be an even integer, and� � SL2(Z) be a ongruene subgroup. If Mk(�) is the spae of modularforms of weight k for � � SL2(Z), thendim(Mk(�)) = (k � 1)(g � 1) + 12�1k +Xp �k2 �1 � 1ep�� ;where g is the genus of �nH � , �1 is the number of inequivalent usps of �,the sum is over ellipti points p of �, ep is the order of the stabiliser of p,and bx is the greatest integer funtion.For the group �0(4), Milne omputes [Mi, Example 2.23℄ that the genusg is zero, and there are no ellipti points.3 Sine �0(4) has three usps, wehave for k even, dim(Mk(�0(4))) = 1 + k2 : (3.11)For k = 2 the spae of non-usp forms is two-dimensional (f. disussion be-fore Proposition 3.9), and therefore it is equal to the entire spaeM2(�0(4)).For k > 2 the three Eisenstein series are linearly independent non-usp forms,and thus for k = 4 they span the entire spae M4(�0(4)). Thus for n = 4 or8 the usp form Fn=2(z) must be identially zero.3Atually, the omputation is arried out for �(2), whih is onjugate to �0(4).27



The seond proof of Proposition 3.10 leads to an interesting observation:From Result 3.11 we see that that the zeroes of the weight-12 modular form� have total order 6, and therefore equation (3.11) implies that the upperbound (2.12) that we omputed for the dimension of Mk(�0(4)) when 12jkis in fat an equality.We now have all the ingredients neessary to give the formulae for thenumber of representations of an integer n as the sum of 4 or 8 squares.Proof of Theorem 2. By de�nition, the number rs(n) is the nth FourieroeÆient of the funtion �s(z). By Proposition 2.8 and Corollary 2.6, �s(z)is a modular form of weight s=2 for �0(4). By Corollary 3.4 (using Proposition3.9 to extend to weight 2),�s(z) = E(1)s=2 (z) + i�s=2E(0)s=2(z) + Fs=2(z);where Fs=2(z) is a usp form. By Proposition 3.10, Fs=2(z) is identiallyzero for s = 4 or 8. The Fourier oeÆients an of �s(z) may therefore bealulated from Proposition 3.8.For s = 4, Proposition 3.8 (extended to weight 2 and using equation (3.6)to ompute B2 = 1=6) givesan = 80BBB� Xdjnn=d oddd � Xdjnn=d even(�1)dd1CCCA :If n is odd, the seond sum is zero. If n = 2am for odd m, then eah divisord of m orresponds to divisors 2ad; 2a�1d; : : : ; 2d; d of n. The ontribution tothe sum is thus 8d(2a � 2a�1 � :::� 2 + 1) = 24d. We onlude thatan = 8>>><>>>: 8Xdjn d for n odd24 Xdjnd oddd for n even.For s = 8, Proposition 3.8 (using equation (3.6) to ompute B4 = �1=30)gives an = 160BBB� Xdjnn=d oddd3 � Xdjnn=d even(�1)dd31CCCA :28



We note that in the �rst sum n� d is even, and in the seond sum n� 2d iseven, so we may multiply by (�1)n�d and (�1)n�2d respetively to onludean = 16Xdjn (�1)n�dd3:4 Fourier CoeÆients of Cusp FormsCorollary 3.4 gives an expression for the theta funtion as a sum of Eisensteinseries and usp forms, and Propositions 3.5 and 3.8 give formulae for theFourier oeÆients of the Eisenstein series. For these formulae to be usefulin alulating the number of representations as sums of squares, we mustshow that the Fourier oeÆients of usp forms are not too large. There areresults of varying depth and generality for this problem, but it turns out thatthe simplest bound is enough for our purposes, sine for k > 2 it is stritlysmaller than the bound for the Eisenstein series derived in Corollary 3.7.Our disussion of the Poinar�e series follows that of Sarnak [S2, x1.5℄;Iwanie [I, x3℄ treats the topi in greater generality. Our treatment of Kloost-erman sums and bounds for the Fourier oeÆients of usp forms roughlyfollows that of Iwanie [I, x4-5℄.Proposition 4.1. Suppose f(z) = 1Xn=1 ane2�inzis a usp form of weight k for �0(4). Then there exists some positive onstantC suh that janj � C � nk=2:Proof. Sine Im(z) = Im(z)= jz + dj2 for any  2 SL2(R) and f(z) isa modular form of weight k, the funtion F (z) = jf(z)j Im(z)k=2 is �0(4)-invariant. Sine f(z) deays exponentially at the usps, F (z) is bounded onall of H ; say jF (z)j �M .For the Fourier oeÆient an, we havean = Z 1+iyiy e�2�inzf(z)dz;29



where z = x+ iy. Thusjanj � e2�ny Z 10 jf(x + iy)jdx �Me2�nyy�k=2:Setting y = 1=n gives the result.We now have all of the neessary tools to prove Theorem 1.Proof of Theorem 1. By de�nition, the number rs(n) is the nth FourieroeÆient of the funtion �s(z). By Proposition 2.8 and Corollary 2.6, �s(z)is a modular form of weight s=2 for �0(4). By Corollary 3.4 (and its extensionto weight 2 in Proposition 3.9), for s � 4,�s(z) = E(1)s=2 (z) + i�s=2E(0)s=2(z) + Fs=2(z);where Fs=2(z) is a usp form. By Corollary 3.7, the nth Fourier oeÆients ofE(1)s=2 (z) and E(0)s=2(z) are O �ns=2�1�, and by Proposition 4.1, the nth FourieroeÆient of Fs=2(z) is O(ns=4).Note that for s = 4, Theorem 1 splits r4(n) into two terms that are bothO(n), whih is not partiularly useful; however, by Proposition 3.10 the termorresponding to the usp form vanishes. For s > 4, the term orrespondingto the Eisenstein series dominates, and Propositions 3.5 and 3.8 give formulaefor rs(n) with error no more than a onstant times ns=4.4.1 Poinar�e SeriesThe bound in Proposition 4.1, though it is strong enough to prove Theorem1, is not the best possible, and we devote the remainder of the setion toimproving the bound. These improvements provide only marginal gain whenounting representations as sums of �ve or more squares, and by Proposition3.10 they are not neessary for ounting sums of four squares. However, animprovement on Proposition 4.1 is essential to get a nontrivial estimate ofrepresentations by more general quadrati forms in four variables, sine theusp forms that vanish for sums of squares may not do so in the general ase.We begin by showing that the spae of usp forms is spanned by a set offorms alled Poinar�e series. The onstrution of the Poinar�e series is verysimilar to the onstrution of the Eisenstein series.30



De�nition. Let m be a nonnegative integer and k > 2 be a half integer. Fors 2 Q [ f1g, hoose Æ 2 SL2(Q) suh that Æs = 1. The mth Poinar�eseries of weight k at the usp s for �0(4) isP (s)m;k(z) = X2�1n�0(4) j(; Æz)�2ke2�imÆz;where the automorphy fator j is de�ned by equation (2.11).To see that the series is well-de�ned, note �rst that for 1 = ( a b d ) and 2 =� a0 b0 d � in the same oset of �1, 1Æz � 2Æz = 3Æz, where 3 = � a�a0 b�b0 d �is a nonzero matrix with determinant zero. Sine all entries are integers and(; d) = 1, 3 = ( r rd d ) for some integer r. Thus e (m3Æz) = e (rm) = 1, ande (m1Æz) = e (m2Æz).Note that for m = 0 the Poinar�e series are the Eisenstein series. Eahterm of a Poinar�e series has absolute value less than or equal to the or-responding term in the Eisenstein series, so eah series onverges absolutelyfor k > 2 and all m. (As with the Eisenstein series, we may extend to thease k = 2 via areful summation, but we will not need this result.) Thatthe Poinar�e series are of any interest at all is due to the following result:Proposition 4.2. For m � 1, k > 2, and any s 2 Q [ f1g, the mthPoinar�e series of weight k at the usp s for �0(4) is a usp form.Proof. By the same reasoning as in the proof of Proposition 3.2, for � 2�0(4), P (s)m;k(�Æz) = X2�1n�0(4)� j(�; Æz)j(�; Æz)��2k e2�im�Æz;and sine right multipliation by � merely permutes the osets of �1n�0(4),we �nd P (s)m;k(�Æz) = j(�; Æz)2kP (s)m;k(Æz): (4.1)We now alulate the values at the usps for the Poinar�e series at in�nity;the alulations for the other series are idential. Let s be a usp of �0(4),and Æ = ( a b d ) 2 SL2(Q) suh that Æ(1) = s. Let w = Æ�1z be the loalvariable at the usp s. ThenP (1)m;k j[Æ℄k (w) = (w + d)�k X2�1n�0(4) j(; Æ�1w)�2ke2�imÆ�1w:31



For any matrix  = ( a b d ) 2 GL2(R), let j 0(; z) = jz + dj1=2. Takingabsolute values of the Poinar�e series term by term, we have���P (1)m;k j[Æ℄k (w)��� � j 0(Æ; w)�2k X2�1n�0(4) j0(; Æ�1w)�2ke�2�m�();where �() = Im(Æ�1w). A simple omputation shows that for any matries�, �, j0(��z) = j 0(�; �(z)) � j 0(�; z):Applying this relation gives���P (1)m;k j[Æ℄k (w)��� � � j0(Æ; w)j0(Æ�1; w)��2k X2�1n�0(4) j0(Æ�1; w)�2ke�2�m�()� � j0(Æ; w)j0(Æ�1; w)��2k0BBB�e�2�m�(0) + X2�1n�0(4)Æ�1 6=I j0(Æ�1; w)�2k1CCCA ;where in the seond line we have split out the term (if any) orrespondingto a 0 suh that 0Æ�1 2 �1. If we let w = iy, all the terms inside thesummation go to zero as w goes to in�nity, so by the same reasoning as inthe proof of Proposition 3.3, the sum is bounded by Cy�k+2 for some onstantC. Furthermore, the oeÆient j 0(Æ; iy)=j 0(Æ�1; iy) is equal to 1, so we have���P (1)m;k j[Æ℄k (w)��� � e�2�m�(0) + Cyk�2 :The seond term learly goes to zero as y goes to in�nity, and sine 0Æ�1is in the stabiliser of in�nity, the �rst term also goes to zero as y goes toin�nity.Carrying out the above alulation for eah Poinar�e series, we onludethat P (s)m;k is holomorphi at all usps of �0(4), and furthermore, that its valueat every usp is zero. This result and the transformation property (4.1) implythat all of the Poinar�e series are usp forms.Next we show that the Poinar�e series span the spae of all usp forms.To do this we use the Petersson inner produt h�; �i on Sk(�0(4)), the spaeof usp forms of weight k for �0(4). This inner produt is de�ned byhf; gi = Z�0(4)nH ykf(z)g(z)dx dyy232



for f; g 2 Sk(�0(4)). The integral is well-de�ned beause for  = ( a b d ) 2SL2(R) we have Im(z) = Im(z)jz + dj2 ;and thus the funtion ykf(z)g(z) and the di�erential y�2dx dy are �0(4)-invariant. The integral onverges (absolutely) sine f and g are usp formsand therefore deay exponentially as y goes to in�nity. It is lear from thede�nition that this is indeed an inner produt: it is bilinear, hf; gi = hg; fi,and hf; fi is a nonnegative real number that is equal to zero if and only if fis identially zero. We now use this inner produt to ompute the projetionof an arbitrary usp form f onto the Poinar�e series.Lemma 4.3. Let k > 2 be a half integer, and let P (1)m;k (z) be the mth Poinar�eseries of weight k at in�nity for �0(4). Suppose f 2 Sk(�0(4)) suh thatf(z) = 1Xn=1 ane2�inz:Then Df; P (1)m;k E = �(k � 1)(4�m)k�1am:Proof. From the de�nition of the Petersson inner produt and of the Poin-ar�e series,Df; P (1)m;k E = Z�0(4)nH X2�1n�0(4)f(z)j(; z)�2ke�2�imzyk dx dyy2= Z�1nH f(z)e�2�imzyk dx dyy2= 1Xn=1 Z 10 Z 10 ane2�i(nz�mz)yk dx dyy2 ;where the absolute onvergene of the sum and the integral have allowed usto interhange the order of summation and integration. The only term thatdoes not vanish identially is n = m; in that ase, using z � z = 2iy and thede�nition of the Gamma funtion givesZ 10 Z 10 e�4�myyk�2dx dy = �(k � 1)(4�m)k�1 ;from whih the result follows immediately.33



From this lemma, we dedue that all usp forms are linear ombinationsof Poinar�e series.Proposition 4.4. For k > 2 a half integer, the spae of usp forms Sk(�0(4))is spanned by the Poinar�e series P (1)m;k for m 2 N.Proof. Let V � Sk(�0(4)) be the linear subspae spanned by the P (1)m;k . ByProposition 2.10, Sk(�0(4)) is �nite dimensional, and therefore if there issome nonzero f 2 Sk(�0(4)) n V , then there is some nonzero g orthogonal toV . By Lemma 4.3, the Fourier oeÆients of any suh g all vanish, and thusg is identially zero, a ontradition.Note that we have not used any speial property of the usp at in�nity,and therefore Proposition 4.4 also holds for the Poinar�e series at any usp s.There are many open questions about Poinar�e series whih stem naturallyfrom the above results, inluding:� What are the linear relations between the various Poinar�e series?� Construt a basis of Sk(�0(4)) onsisting of Poinar�e series.� Whih of the Poinar�e series do not vanish identially?For a summary of some of the known results to these questions, see [I, x3.3℄.4.2 Kloosterman SumsSine the spae of usp forms Sk(�0(4)) is �nite-dimensional, Proposition 4.4redues the problem of bounding the Fourier oeÆients of usp forms to thesame problem for Poinar�e series. We now show that this problem in turnomes down to estimating ertain exponential sums alled Kloosterman sumswhih arise in the Fourier expansion of the Poinar�e series. In the remainderof the setion, we outline various methods for estimating Kloosterman sums,eah of whih improves the estimate in Proposition 4.1. The disussion thatfollows will not be as rigorous as that above; for more details see [S2℄ and [I℄.Proposition 4.5. Let Pk;m(z) be the mth Poinar�e series at in�nity of weightk > 2 for �0(4). Then Pk;m(z) =P1n=1 ane2�inz, withan = Æmn + 2�i�k � nm�k�12 X4j>0 �1Jk�1�4�pmn �S(m;n; );34



where J�(x) is the Bessel funtion of order � de�ned byJ�(z) = 1Xj=0 (�1)jj!�(j + 1 + �) �x2��+2j ;and S(m;n; ) is the Kloosterman sumS(m;n; ) = Xad�1 (mod )� d�2k ��2kd e�ma+ nd � : (4.2)Proof. From the de�nition of the Poinar�e series, we havePk;m(z) = e (mz) + X2�1n�0(4)=�1 6=1 X�2�1 j(�; z)�2ke (m�z)= e (mz) + X=( a b d )2�1n�0(4)=�16=0 � d��2k �kdXn2Z((z + n) + d)�ke�ma � m((z + n) + d)� ;where we have used ad� b = 1 to write�z = �a b d��1 n0 1� z = a � 1((z + n) + d)z :Applying the Poisson summation formula (Result 2.1) givesPk;m(z) = e (mz) + X2�1n�0(4)=�16=0 � d��2k �kdXn2ZZ 1�1((z + v) + d)�ke�ma � m((z + v) + d) � nv� dv;and making the substitution u = z + v + d= givesPk;m(z) = e (mz) +X4j>0 Xad�1 (mod )� d��2k �kdXn2Ze�nz + ma+ nd �Z 1+iy�1+iy(u)�ke�� m2u � nu� du:35



By Cauhy's theorem, the integral does not depend on y, and thus for n � 0letting y go to in�nity shows that the integral vanishes. For n > 0, theintegral evaluates to 2�ik � nm� k�12 Jk�1�4�pmn � ;so if we de�ne the Kloosterman sum S(m;n; ) by equation (4.2), then wehavePk;m(z) = e (mz) + 2�ik 1Xn=1 � nm�k�12 e (nz)X4j>0 �1S(m;n; )Jk�1�4�pmn � ;whih proves the proposition.Sine there is a well-known bound for the Bessel funtion, estimatingthe Fourier oeÆients of usp forms beomes a matter of estimating theKloosterman sums. We fous on the ase where the weight k is an eveninteger, in whih ase the Legendre symbol and �d drop out, and we have theso-alled \lassial" Kloosterman sumS(m;n; ) = Xad�1 (mod ) e�ma+ nd � :We note that the sum S(m;n; ) is a real number sine for eah pair (a; d)with ad � 1 (mod ), (�a;�d) is a di�erent pair with the same property.The Kloosterman sums satisfy some basi properties whih simplify al-ulations. If (a; ) = 1 we haveS(am; n; ) = S(m;an; ); (4.3)and if (1; 2) = 1 we haveS(m;n; 12) = S �m; 22n; 1�S �m; 12n; 2� ; (4.4)where 1 and 2 are multipliative inverses of 1 and 2 modulo 2 and 1,respetively. This multipliativity property allows us to restrit our attentionto the sum S(m;n; p) where p is a prime. We will need the following lemma,whih bounds the number of distint prime divisors of an integer .Lemma 4.6. For n a positive integer, let !(n) be the number of distintprime divisors of n. Then for any � > 0, there exists some C > 0 suh thatfor all n, !(n) � � log n + C:36



Proof. Sine the sequene of primes is stritly inreasing, given any a > 1there exists some r > 0 suh that for any positive integer m, the produt ofthe �rst m primes is greater than ram, and therefore any integer less thanram has at most m distint prime fators. If we substitute n = ram, then nhas at most (log n� log r)= log a distint prime fators. Substituting a = e1=�gives the result.Lemma 4.6 and the multipliativity property (4.4) allow us to translate abound on the Kloosterman sums S (m;n; p�) into a bound on all Kloostermansums S(m;n; ).Proposition 4.7. Suppose that for p prime and � a positive integer, theKloosterman sum de�ned in (4.2) (with k a positive even integer) satis�esS(m;n; p�) � C � p��for some � 2 [0; 1) and some positive onstant C. Then the nth FourieroeÆient of the mth Poinar�e series of weight k for �0(4) satis�esjanj � C 0 � n k�12 +�2+�for some positive onstant C 0 and any � > 0.Proof. By the multipliativity property of Kloosterman sums (4.4),S(m;n; ) = C!()�;where !() is the number of distint prime divisors of . By Lemma 4.6,there exists a onstant D suh that !() � � log +D, and thus jS(m;n; )j �D0 � �+� for some D0.The bound for the Bessel funtion isJ�(x) � R �min�x�; 1px� ;for some positive R, whih gives J�(x) � R �xÆ for any Æ 2 [�1=2; �℄. Setting� = k � 1 and Æ = � + 2�, (where we have hosen � so that � + 2� < k � 1),we have from Proposition 4.5,janj � R � nm� k�12 X4j>0 �4�pmn��+2� �1��:The sum onverges for any � > 0, and thus for any given m and n we havethe result. 37



For � � 2 and p an odd prime, the Kloosterman sum S(m;n; p�) an beevaluated expliitly for ertain values of m and n; see [I, x4℄ for details. Theresult is that for p a prime and � � 2 an integer,jS (m;n; p�)j � 2p�=2 (4.5)for any m and n.The Kloosterman sum S(m;n; p) annot be evaluated expliitly in thesame manner, and the work on estimating Kloosterman sums primarily in-volves improving the estimate on this sum. Kloosterman himself alulateda nontrivial estimate using \power-moments" de�ned byV`(p) = Xa (mod p)a6=0 S(a; 1; p)`: (4.6)For ` = 4, one an ompute (see [I, x4.4℄)V4(p) = 2p3 � 3p2 � p � 1:Dropping all but the term a � mn (mod p) in equation (4.6) givesS(mn; 1; p)4 � V4(p) � 2p3;and applying the property (4.3) givesjS(m;n; p)j � 2p3=4if (p; n) = 1. If pjn thenS(m;n; p) = � �1 if (p;m) = 1p � 1 if (p;m) 6= 1.Sine there are only a �nite number of suh p they may be absorbed into theonstant, giving jS(m;n; p)j � C � p3=4for all p. With this result and the bound (4.5), we may take � = 3=4 inProposition 4.7, whih givesjanj = O �n k2� 18+�� :In 1948, A. Weil proved the Riemann hypothesis for urves over �nite�elds, from whih he dedued the so-alled \Weil bound,"jS(m;n; p)j � 2p1=2: (4.7)38



This bound and equation (4.5) give � = 1=2 in Proposition 4.7, and thusjanj = O �n k2� 14+�� :Weil's proof of the bound (4.7) is quite deep; Iwanie [I, x5.2℄ gives an ele-mentary proof of the same bound by estimating sums of Kloosterman sums.Finally, we note that for even weights k, the best possible bound for anis given by the \Ramanujan onjeture,"janj = O �n k2� 12+�� :This onjeture was proven in 1974 by P. Deligne.If the weight k is odd or half an odd integer, the alulations are moresubtle but the idea is the same. One use multipliative properties of theKloosterman sums (in this ase also alled \Sali�e sums") to redue the prob-lem to estimating S(m;n; p�) for p prime. The ruial estimate (see [I, x4.6℄)is again jS(m;n; p)j � 2p1=2;whih gives janj = O �n k2� 14+�� :For general n this is the best bound possible, while for n square-free it anbe improved (see [S2, Ch. 4℄) tojanj = O �n k2� 27+�� :The analogue of the Ramanujan onjeture for half-integer weight k isjanj = O �n k2� 12+��for n square-free, but unlike the onjeture for even weight k, this result hasyet to be proven. The best bounds to date for the funtion hs(n) in Theorem1 are thereforehs(n) = 8>>>><>>>>: O �n s4� 14+�� for s � 4, n � 0O �n s4� 27+�� for s � 4, n � 0 square-freeO �n s4� 12+�� for s � 4, 4js, n � 0.39



5 Sums of Higher PowersIn Setions 2 through 4, we used the theory of modular forms to ountrepresentations of integers as sums of squares. A natural question to askis whether the results and methods generalise to sums of ubes and higherpowers. Indeed, there is an analogue of Theorem 1 for sums of an arbitrarypower, but the result annot be derived via modular forms. Instead, oneuses the \irle method" devised by Hardy and Littlewood to ompute anorder-of-magnitude estimate. The main result is:Theorem 3. Suppose k and s are integers suh that k � 2 and s > 2k. Forn a positive integer, let rk;s(n) be the number of solutions in positive integersto the equation xk1 + : : :+ xks = n:Then rk;s(n) = S(n)��1 + 1k�s �� sk��1 ns=k�1 + hs;k(n);where S(n) is an arithmeti funtion that is bounded above and below byonstants depending only on s and k, and hs;k(n) = O(ns=k�1��) for some� > 0.As in the ase of sums of s squares, the problem omes down to estimatingFourier oeÆients of a ertain \generating funtion" raised to the sth power.The generating funtion in the general ase isfk(z) = 1Xm=0 e2�imkz:From this de�nition, we see that fk(z)s has a Fourier series,fk(z)s = 1Xn=0 ane2�inz;and that the Fourier oeÆients an are exatly the number of representationsrk;s(n). Note that for k = 2, fk(z) is almost the funtion �1(z) we onsideredin Setion 2, the only di�erene being that we are now summing over positiveintegers only.One might hope that the funtion fk(z) (whih onverges for z 2 H ) hastransformation properties that allow us to onsider it as a modular form.Indeed, we have the relation fk(z + 1) = fk(z) for all z 2 H . However,40



to derive the formula for �n(�1=z) in Proposition 2.3 we used the Poissonsummation formula and applied the fat that the Fourier transform of thetheta funtion is another theta funtion, or, more preisely, that the Fouriertransform of a Gaussian is another Gaussian. In the general ase, the termsof fk(z) are not Gaussians, and thus we annot take a Fourier transform andhope to reover some other form of fk(z). Our hopes of using the theoryof modular forms to estimate the Fourier oeÆients of fk(z)s are thereforedashed, and we must turn to another method.The following disussion of the irle method is based losely on thatof Nathanson [N, x4-5℄. Vaughan [V, x2℄ and Davenport [D, x2-6℄ providesimilar expositions.5.1 The Cirle MethodThe Hardy-Littlewood irle method estimates the Fourier oeÆients offk(z)s by omputing them diretly via integration. Before desribing themethod, we make a simpli�ation due to Vinogradov, whih is to replae thein�nite series fk(z) with a trigonometri polynomial. For any positive integerN , let P = �N1=k�, and let pk(z) = PXm=0 e �mkz� :(As before, e (z) = e2�iz.) Then the �rst N Fourier oeÆients of pk(z)smath those of fk(z)s, and the problem of omputing rk;s(n) is redued toomputing Fourier oeÆients of pk(z)s for suÆiently large N . We thushave rk;s(n) = Z 10 pk(�)se (�n�) d�; (5.1)whih follows from the orthogonality relation,Z 10 e (m�) e (�n�) d� = Æmn:(Here and throughout the remainder of this setion, we impliitly assumethat we have �xed a spei� n and hosen N = n.)The idea behind the irle method is to divide the interval of integrationinto two subsets: the \major ars" M and the \minor ars" m. The majorars onsist of points � that are near a rational number with small denomina-tor. (The terms \near" and \small" will be made more preise later.) These41



points give a nontrivial ontribution to the integral. As a simple example,onsider � = 1=3 and k = 4. Sinee�m43 � = � 1 if m � 0 (mod 3)�12 + ip32 if m � 1 or 2 (mod 3) ;p4(1=3) is roughly equal to Ni=p3, so the ontribution to the integral isO(N). The minor ars, on the other hand, onsist of points that are notnear a rational number with small denominator; these points give a negligibleontribution to the integral. For example, if � is irrational, the numbersfe �nk�� : n 2 Zg are uniformly distributed on the unit irle, and thus forsuÆiently large N , the sum as n ranges from 1 to N is very small relativeto N .To onstrut the major and minor ars expliitly, we assume n � 2k, soP � 2. Choose � 2 (0; 1=5), and for every pair of relatively prime integers(q; a) with 1 � q � P � and 0 � a � q, de�neM(q; a) = �� 2 [0; 1℄ : ����� � aq ���� � 1P k�v� ;and let M = [1�q�P � [0�a�q(q;a)=1M(q; a):The setM(q; a) is alled a major ar (though it is atually an interval), andM is the set of all major ars. The major ars thus onsist of all � 2 [0; 1℄that are near a rational number with denominator smaller than P � . Themajor ars are disjoint, for if � 2 M(q; a) \M(q0; a0) and a=q 6= a0=q0, thenjaq0� a0qj � 1 and 1P 2� � 1qq0� ����aq � aq0 ����� ����� � aq ����+ ����� � a0q0 ����� 2P k�� ;whih is impossible sine P � 2 and k � 2.42



The width of the intervalM(q; a) is 2P ��k , exept when q = 1, in whihase the width is P ��k . The number of major ars isP �Xq=1 '(q) � P �Xq=1 q = 12P � (P � + 1);and therefore the total measure of the set of major ars is�(M) � 2P ��kP � (P � + 1)2 � 2P k�3� : (5.2)Thus the measure of the major ars goes to zero as n goes to in�nity.Next, we de�ne the set of minor ars to bem = [0; 1℄ nM:This set is a �nite union of (disjoint) open intervals and onsists of all � 2[0; 1℄ that are not near a rational number with denominator smaller than P � .From (5.2), we see that the measure of the set of minor ars approahes 1 asn approahes in�nity.We may thus split our expression for rk;s(n) into two terms:rk;s(n) = ZM pk(�)se (�n�) d�+ Zm pk(�)se (�n�) d�: (5.3)We will see below that even though the minor ars omprise the bulk of theunit interval, their ontribution to the integral is negligible, and estimatingrk;s(n) omes down to estimating the integral over the major ars.5.2 The Minor ArsWhen k = 1, the polynomialpk(�) = PXm=0 e �mk��is a geometri series and is thus easy to estimate. For k > 1, one an usea \forward di�erene operator" to estimate pk(�) in terms of sums in whihmk is replaed by a polynomial in m of degree k � 1. Repeated appliationsof this argument redue to the ase k = 1. The rigorous desription of thisargument follows from a series of lemmas, whih we will state but not provein full detail. For a omplete treatment, see [N℄ or [V℄.43



For any funtion f : R! R, de�ne the forward di�erene operator �d by�d(f)(x) = f(x+ d)� f(x):For ` � 2, de�ne the `th iterate of the forward di�erene operator,�d`;:::;d1 = �d` Æ�d`�1 � � � Æ�d1:The di�erene operator redues degrees of polynomials; for example, if wetake f(x) to be xk, then�d`;:::;d1(xk) = d1 � � � d`hk�`(x);where hk�`(x) is a polynomial in x of degree k � ` with integer oeÆients.If we let f(x) be an arbitrary polynomial of degree k andT (f) = QXx=1 e (f(x)) ; (5.4)then we may use the di�erene operator to make the estimate,jT (f)j2j � (2Q)2j�j�1 Xd1;:::;djjdij�Q Xx2I e (d1 � � � djhk�j(x)) ; (5.5)where I onsists of integers in a subinterval of [1; Q℄, and hk�j(x) is a poly-nomial of degree k � j. If we assume that the leading oeÆient of f(x) isnear a rational number with denominator q, then we may bound the sum interms of powers of q and Q, whih gives the following result:Lemma 5.1 (Weyl's inequality). Let f(x) = �xk+ : : : be a polynomial inx of degree k � 2 with real oeÆients, and suppose������ aq ���� � 1q2 ;where q � 1 and (a; q) = 1. Let K = 2k�1 and � � 0, and de�ne T (f) asin (5.4) above. Then there exists some positive onstant C (depending on kand �) suh that jT (f)j � C �Q1+� �q�1 +Q�1 +Q�kq�1=K :Weyl's inequality allows us to bound pk(�) at any given � in terms ofn and the denominator of a rational number near �. However, we wish tobound pk(�) as it is integrated over all � 2 m. This is aomplished viaHua's lemma. 44



Lemma 5.2 (Hua's lemma). For k � 2 and any � > 0, there exists somepositive onstant C (depending on k and �) suh thatZ 10 jpk(�)j2k d� � C � P 2k�k+�:Proof. The proof proeeds by indution on j for j = 1; : : : ; k. The base asej = 1 is lear sineZ 10 jT (�)j2 d� = PXm=1 PXn=1 Z 10 e ��(mk � nk)� d� = P:Now assume the result holds for some j � k� 1. By equation (5.5), we havejpk(�)j2j � (2P )2j�j�1 Xd1;:::;djjdij�P Xx2I e (�d1 � � � djhk�j(x)) ;where hk�j(x) is a polynomial of degree k � j with integer oeÆients, andI is an interval of onseutive integers ontained in [1; P ℄. It follows thatjpk(�)j2j � (2P )2j�j�1Xd r(d)e (�d) ; (5.6)where r(d) is the number of fatorisations of d in the formd = d1 � � � djhk�j(x)with di < P and x 2 I.Similarly, by writingjpk(�)j2j = pk(�)2j�1pk(��)2j�1;one obtains jpk(�)j2j =Xd s(d)e (��d) ; (5.7)where s(d) is the number of representations of d in the formd = j�1Xi=1 yki � j�1Xi=1 xkiwith 1 � xi; yi � P . ThenXd s(d) = jpk(0)j2j = P 2j ; (5.8)45



and by the indutive hypothesis,s(0) = Z 10 jpk(�)j2j d� � C 0 � P 2j�j+� (5.9)for some onstant C 0. It follows from (5.6) and (5.7) thatZ 10 jpk(�)j2j+1 d� � (2P )2j�j�1 Z 10 Xd r(d)e (�d)Xd s(d)e (��d)� (2P )2j�j�1 r(0)s(0) +Xd6=0 r(d)s(d)! :One an then show that r(0) = O(P j) and for d > 0, r(d) = O(P �) for any� > 0. Combining these fats with the bounds (5.8) and (5.9) givesZ 10 jpk(�)j2j+1 d� � C � P 2j�j�1 �P jP 2j�j+� + P �P 2j�� 2C � P 2j+1�(j+1)+�for some onstant C, and thus the result holds for j + 1.Weyl's inequality and Hua's lemma are the two major ingredients inbounding the minor ars term. In addition, we use a result of Dirihletthat says how losely we may approximate a number by a rational.Lemma 5.3 (Dirihlet). Let � and Q be real numbers, Q � 1. Then thereexist relatively prime integers a and q suh that 1 � q � Q and������ aq ���� < 1qQ:We now have all the tools neessary to bound the minor ars term inequation (5.3).Proposition 5.4. Let k � 2 and s � 2k + 1. Then there exists � > 0 suhthat Zm pk(�)se (�n�) d� = O �n sk�1��� ;where the implied onstant depends only on k and s.46



Proof. We have to save an amount n�1�� over the trivial estimate ns=k.Hua's lemma saves n��1, and Weyl's inequality saves the rest.By Dirihlet's theorem (Lemma 5.3) with Q = P k�� , for any real number� we an �nd a fration a=q with 1 � q � P k�� and (a; q) = 1 suh that������ aq ���� � 1qP k�� � min� 1P k�� ; 1q2� :Sine � 2 m � (P ��k ; 1 � P ��k), we have 1 � a � q � 1. If q � P � , then� 2 M(q; a), whih ontradits our assumption that � 2 m. Thus q > P � .Applying Weyl's inequality (Lemma 5.1) with f(x) = �xk, we have for any�0 > 0, jpk(�)j � C � P 1+�0 �q�1 + P�1 + P�kq�1=K � C1 � P 1+�0��=K ;where K = 2k � 1. With this result and Hua's lemma (Lemma 5.2), we have����Zm pk(�)se (�n�)���� d� � sup�2m jpk(�)js�2k Z 10 jpk�j2k d�� �C1 � P 1+�0��=K�s�2k �C2 � P 2k�k+�0�� C � P s�k+Æ;where we have ombined the onstants into C and setÆ = �K �2k � s�+ �0 �s� 2k + 1� :Sine s > 2k, we an hoose �0 suÆiently small so that Æ < 0. Letting� = �Æ=k and using the de�nition P = �N1=k� gives the result.5.3 The Major ArsTo estimate the major ars term in equation (5.3), we begin by writing thefuntion pk(�) on the major ars as the produt of two exponential sums plusa small error term. Bounding these sums and integrating over the major arsgives us a bound for the major ars term in terms of an exponential sumalled the \singular series," an integral alled the \singular integral," and asmall error term. Further alulations then show that the singular series isbounded by a onstant, and the singular integral is O �ns=k�1�. As in theprevious setion, we omit many of the details; for a full treatment, see [N℄ or[V℄. 47



We start by introduing the auxiliary funtionsv(�) = NXm=1 1km 1k�1e (m�) ;S(q; a) = qXr=1 e�arkq � :Roughly speaking, the funtion v(�) measures the probability that m is akth power, and S(q; a) measures the distribution of the kth powers mod-ulo q. When � is ontained in the major ar M(q; a), then pk(�) is wellapproximated by the produt of these two funtions. Spei�ally,pk(�) = �S(q; a)q � v�� � aq�+O �P 2�� : (5.10)If we write V (�; q; a) = �S(q; a)q � v�� � aq� ;then fatoring the expression pk(�)s � V (�; q; a)s and applying (5.10) showsthat pk(�)s � V (�; q; a)s = O �P s�1+2�� :Integrating over the major ars and applying the estimate for �(M) in (5.2)gives ZM jpk(�)s � V (�; q; a)sj d� = O �P s�k�Æ1�for some Æ1 > 0. Sine the integral over all of M is equal to the sum of theintegrals over the individual ars M(q; a), we see thatZM pk(�)se (�n�) d� =X1�p�P � X0�a�q(a;q)=1ZM(q;a) V (�; q; a)se (�n�) d�+O �P s�k�Æ1� :Further algebrai manipulation leads to the following result:Lemma 5.5. LetS(n;Q) = X1�q�Q X1�a�q(a;q)=1�S(q; a)q �s e��naq � ;J�(n) = Z P ��k�P ��k v(�)se (�n�) d�:48



Then ZM pk(�)se (�n�) d� = S(n; P �)J�(n) +O �P s�k�Æ1� :Lemma 5.5 tells us that estimating the major ars term omes down toestimating the sum S(n; P �) and the integral J�(n). The �rst step in esti-mating the integral J�(n) is to show that expanding the range of integrationintrodues only a small error. LetJ(n) = Z 1=2�1=2 v(�)se (�n�) d�:The funtion J(n) is alled the singular integral. One may use the boundv(�) � C �min�P; j�j�1=k�for j�j � 1=2 to show thatjJ(n)� J�(n)j = O �P s�k�Æ2� (5.11)for some Æ2 > 0. Then by induting on s and using a omputational lemmaabout the Gamma funtion, one arrives at the following formula:J(n) = ��1 + 1k�s �� sk��1N sk�1 +O �N s�1k �1� (5.12)for s � 2.To estimate the sum S(N;P �), we begin by ompleting the series toin�nity and show that this introdues only a small error. If we letS(n) = 1Xq=1 An(q);where An(q) = X1�a�q(a;q)=1�S(q; a)q �s e��naq � ;then there is some Æ3 > 0 suh thatjS(n) �S(n; P �)j = O �P�Æ3� : (5.13)The series S(n) is alled the singular series. We may now apply Weyl'sinequality (Lemma 5.1) to make the estimateS(q; a) = O �q1� 1K+�� ;49



from whih we dedue that An(q) = O �q�1�Æ4� (5.14)for some Æ4 > 0. The singular series S(n) thus onverges absolutely and uni-formly with respet to n. We onlude that there is a onstant 2 (dependingonly on k and s) suh that jS(n)j < 2 (5.15)for all positive integers n.Bounding the singular series from below is a bit more ompliated. The�rst step is to show that the funtion An(q) is multipliative; i.e. for q and rrelatively prime, An(q)An(r) = An(qr). This property allows us to limit ouralulations to the ase when q is a power of a prime number. If we de�ne�n(p) = 1 + 1Xh=1 An �ph� ;it is possible to show that �n(p) = limh!1 Mn(ph)ph(s�1) ; (5.16)where Mn(q) is the number of solutions to the ongruenexk1 + � � � + xks � n (mod q) (5.17)with the xi integers in [1; q℄.The next step is to expand S(n) as an \Euler produt,"S(n) = Yp prime�n(p): (5.18)From equation (5.16) we dedue that S(n) is a positive real number, andfrom the bound (5.14) it follows that there exists some p0 suh that12 � Yp>p0 �n(p) � 32for all n � 1. It therefore suÆes to show that �n(p) is positive for all p � p0.This result follows from equation (5.16) and the fat that when q = p , thereis always a solution to the ongruene (5.17) with the xi not all divisible byp. We onlude that there is some 1 suh thatS(n) � 1 > 0 (5.19)for all positive integers n.We now have all the tools to bound the major ars term in equation (5.3).50



Proposition 5.6. For s � 2k + 1, there exists some � > 0 suh thatZM pk(�)se (�n�) d� = S(n)��1 + 1k�s �� sk��1N sk�1 +O �N sk�1��� :Proof. By Lemma 5.5,ZM pk(�)se (�n�) d� = S(n; P �)J�(n) +O �P s�k�Æ1� :By equations (5.13) and (5.11), the �rst term is equal to�S(n) +O �P�Æ3�� �J(n) +O �P s�k�Æ2�� :By equation (5.12) and the fat that P = �N1=k�, J(n) = O �P s�k�. Multi-plying out the produt and ombining error terms yieldsZM pk(�)se (�n�) d� = S(n)J(n) +O �P s�k��0� ;where we have used the bound (5.15) to inorporate the produt of S(n)and the error in J(n) into the overall error term. Substituting the formula inequation (5.12) and one more applying the bound (5.15) gives the result.5.4 ConlusionsWe now ombine all of the above results to prove the Hardy-Littlewoodasymptoti formula for rk;s(n).Proof of Theorem 3. From equation (5.1), we haverk;s(n) = Z 10 pk(�)se (�n�) d�:By onstrution of the major ars M and the minor ars m, this expressionsplits into two integrals,rk;s(n) = ZM pk(�)se (�n�) d�+ Zm pk(�)se (�n�) d�:By Proposition 5.4,Zm pk(�)se (�n�) d� = O �n sk�1��1� ;51



and by Proposition 5.6,ZM pk(�)se (�n�) d� = S(n)��1 + 1k�s �� sk��1N sk�1 +O �N sk�1��2� :Combining the error terms and noting that S(n) is bounded above and belowby onstants depending only on k and s gives the result.As a parting remark, we note that when k = 2 and s � 5, Theorem 3gives r2;s(n) = Æ0s(n) + h0s(n); (5.20)where Æ0s(n) = O �ns=2�1� and h0s(n) = O �ns=2�1���. This result is a diretorollary of Theorem 1.Eah of the two treatments of the problem for sums of squares has itsadvantages. The Hardy-Littlewood irle method allows us to derive bothan upper and a lower bound for the funtion Æ0s(n) in equation (5.20), soÆ0s(n) is truly an asymptoti approximation to rk;s(n). With modular formswe did not derive a lower bound, so Theorem 1 allows for the possibility thatthe so-alled \error term" hs(n) may dominate for some large values of n.On the other hand, the irle method gives a onsiderably worse bound forthe error term h0s(n) than the O �ns=4� of Theorem 1. In addition, the irlemethod an only provide approximations to rk;s(n), and even for the asek = 2 we annot use it to derive any formulae analogous to those in Theorem2.Referenes[D℄ Davenport, Harold. Analyti Methods for Diophantine Equationsand Diophantine Inequalities. Ann Arbor: Ann Arbor Publishers,1962.[G℄ Gunning, R.C. Letures on Modular forms. Prineton: PrinetonUniversity Press, 1962.[I℄ Iwanie, Henryk.Topis in Classial Automorphi Forms (GSM 17).Providene: Amerian Mathematial Soiety, 1997.[K℄ Koblitz, Neal. Introdution to Ellipti Curves and Modular Forms(GTM 97). New York: Springer-Verlag, 1984.52



[K�o℄ K�orner, T.W. Fourier Analysis. Cambridge: Cambridge UniversityPress, 1988.[Mi℄ Milne, J.S. Modular Funtions and Modular Forms. Aessed on-line: http://www.jmilne.org/math/CourseNotes/math678.html, 24Apr 2003.[Mu℄ Mumford, David. Tata Letures on Theta I. Boston: Birkh�auser,1983.[N℄ Nathanson, Melvyn B. Additive Number Theory: The ClassialBases (GTM 164). New York: Springer, 1996.[S1℄ Sarnak, Peter. \Kloosterman, quadrati forms and modular forms."Nieuw Arhief voor Wiskunde 5 1 (2000), 385-389.[S2℄ ||. Some Appliations of Modular Forms. Cambridge: CambridgeUniversity Press, 1990.[Sh℄ Sholl, Anthony J. \Modular Forms." Cambridge University, LentTerm 2003.[V℄ Vaughan, R.C. The Hardy-Littlewood method. Cambridge: Cam-bridge University Press, 1981.[W℄ Weisstein, Eri W. \Jaobi Symbol." Aessed online:http://mathworld.wolfram.om/JaobiSymbol.html, 5 Mar 2003.
53


